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A Kh. Attaev

Institute of Applied Mathematics and Automation of Kabardin-Balkar Scientific Centre of RAS, Nalchik, Russia
(E-mail: attaev.anatoly@yandex.ru)

On Problem of Internal Boundary Control
for String Vibration Equation

The article deals with the vibration control problem described by one dimensional wave equation with
integral type boundary condition. As usual, the initial and final moments of time for arbitrary displacements
and velocities of the wave are specified by points on a string (Cauchy data). It is shown that the minimum
time for the realizable control is uniquely determined by the condition of correct solvability to the Cauchy
problem involving data lying on disconnected manifold. This suggests that the internal boundary conditions
does not affect the minimum time value. Necessary and sufficient conditions for the existence of the desired
internal-boundary controls that move the process from the state initially specified to a predetermined final
one are obtained and written out. The controls are presented in explicit analytical form. Moreover, it
is shown that for the inner-boundary controls expressions, one should use not the representation of the
solution to the Cauchy problem in the sought-for domain, but the formula for the general solution of the
string oscillation equation (d’Alembert’s formula).

Keywords: string vibration equation, boundary control, Cauchy problem, trunk and branched pipeline
networks, nonlocal mixed problem.

Introduction

One of the main parts of systems with distributed parameters in the Control Theory is one-dimensional
distributed-parameter system for objects with the motion described by hyperbolic partial differential equations.
As a rule, these objects control requires considering oscillation and wave propagation. We refer to objects
include such technical facilities as a compressor and pumping stations providing distributing water via trunk
and branched pipeline networks at a given flow rate and pressure. The problem of pressure pulsation dampening
in pipelines is considered to be a classical one. A detailed account on engineering aspects and mathematical
formulations for this problem and also various solution techniques can be found in [1], as well as in [2, 3]. There
are many works devoted to boundary control problems for hyperbolic equations, including loaded ones, and to
optimization problems in terms of an arbitrary sufficiently large time interval, and others, we here mention only
some of them [4-14]. These papers investigated boundary control problems for hyperbolic equations with both
local and nonlocal multi-point boundary conditions. The boundary control problem is formulated as follows:
Define the control action for moving the internal state of a system from any initial state to any other final state
in a finite time interval. If the controls are determined on the boundary such problem is called the boundary
control problem. If controls are defined inside the domain as well as on the boundary such a problem is logically
called the problem of the internal boundary control. In mathematical terms, the unique solvability of the control
problem is equivalent to the well-posed solvability of the Cauchy problem with data lying on a disconnected
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manifold. It is this fact that makes it possible to determine the minimum time during which unambiguous
control is carried out.

The following results were obtained:

1. Necessary and sufficient conditions (), ¢1(x), ¥o(x), ¥1(x), k1(z,t), ka(z,t), are established ensuring
the existence of the boundary controls u(t) and v(t), in the form of

0(0) = 140(0) — @) (1) + 1 (1) = 0, (1)
wo(l) +o(l) — <>fw1<0):o, (2)
0(0) = 1(0) — oy (1) + by (1) = 0, (3)
(l) + (1) — 1 (0) — 1, (0) = 0, (4)
l
20(0) + o) + | %(&)d& —010) =+ | di(©)de =0, (5)
l !
/ i€, 0)0(€)dE = 0, / k(D (€)de =0, i=1,2, (6)
0 0
l l
| e 0wnlerde + [kl opwolerde =0, i=1.2 (7)
0 0
l l
[ Do+ [ ke nu©de =0, =12 (®)
0 0
2. Under conditions (1)-(4) , an explicit analytical form of the sought controls is found
t l
u0) = g0+ 5 [ 0@+ 500 -0+5 [ 0@+ 50 - a0 +Ua. O

1 : 1 1
o) = 3ot =)+ [ @i+ Jer0)+ 5 [ O+ Jenll) - Jer0) + U, (0)

where

-t l
Ualt) =5 [ k(e +6000(@d+ 5 [l = tiaulpdes

l t -t -t

5 | Bt [w@a— ( / ki<t+n,t>dn> Yol€)de+
1 l l 1 t
5/t (/5 ki(n—t,t)dn> wo(ﬁ)d£+§/0 ki(€ 41 —t,t)p1(8)dE+

1 t l 1 -t t

5 [ e t=roa [o@aceg [ ([ i) vt

¢ ¢ ¢ 1
%/0 (/0 k,»(n—i—l—t,t)dn) Pr()dE + 2 [2o(0) — 1 (D) [/0 ki(z, )z — ltk;i(z,t)dz] =12

Below the problem of internal-boundary-value control for the string oscillation equation is formulated and
the possibility for obtaining unique solution in minimum time interval using the control and the Cauchy problems
is discussed.

Mathematics series. Ne 1(101)/2021 5



A Kh. Attaev

Main part

In the domain Q = {(z,¢) : 0 < 2 < [,0 < t < T} the one-dimensional equation of string vibration is
considered
Ugpyr — Ut = 0, (11)

describing, for example, the string vibration with the ends fixed at the points x = 0 and z = [. Assume that
arbitrary displacements and arbitrary speeds are set at the initial time ¢ = 0 and the final time ¢t = T":

u(z,0) = po(x), ut(x,0) =1ho(x), 0 <z <, (12)
U(QC,T) = 901(x)a ut(z7T) = 7/}1(35)3 0 <z < L. (13)
Internal boundary conditions are specified by the following relations:

l
a0, + [ (€. ule. 0 = (e, (14

0

2
u(lt)+ [ ka6 tpulé. 0 = (o) (15)

0

where ki (z,t), ka(x,t) — are the given functions, and k;(x,t), %k‘i(x,t) €cC(Q),i=1,2.

Further in this paper the function u(z,t) € C%(2)NC () — is understood as the solution to equation (11).
The problem is to find such values of p(t) and v(t) for unambiguous moving the system from state (14) to state
(15) in the minimum time interval.

From the problem formulated above it immediately follows that u(t) and v(t) are uniquely determined in
the domain 2 if and only if the Cauchy problem (12), (13) for equation (11) in the domain € is well-posed.

Indeed, in case when the Cauchy problem (12), (13) for equation (11) occurs underdetermined, the infinite
set of (u(t),v(t)) can perform the desired control. This implies the non-uniqueness of the solution to the Cauchy
problem (12), (13) for equation (11) in the domain 2. If the Cauchy problem (12), (13) for equation (11) in the
domain € is underdetermined, then control is possible only for linearly depend (12) and (13). These items are
discussed in [4] and in more detail in [14]. There you can also find out that the Cauchy problem (12), (13) for
equation (11) in the domain  is well-posed if and only if the value of T is equal to I. If T > [, the Cauchy
problem is underdetermined. IF T < [, the Cauchy problem is redefined. This suggests that the desired control
is unambiguously feasible if and only if T = [.

Consider T' = [. It is well known that any regular solution to equation (11) can be represented as follows:

u(z,t) = f(x —t) + g(z + 1), (16)

where f(x) and g(x) - g(x) — are arbitrary twice-continuously differentiable functions. Further, for conveniences
for the functions f(x) and g(x) from formula (16), introduce the following notation:

f(.?;‘) = fO(x)v g(l‘) = gO(‘T)vx € [O’ZL

f(@) = fi(z),x € [-1,0],
9(x) = g1(x), x € [, 21].
Satisfying conditions (12) for (16) and using the notation, obtain

fole) =257 = 5 [“wnlepie + (1)
i) = 24 15 [ vaterie - . (18)

Now satisfying conditions (13) for (16), as T' = [, we obtain
flx=1) +9(x+1) = ei(2),

—flle=0)+d@+1) =¢i(2).

6 Bulletin of the Karaganda University



On Problem of Internal Boundary...

Hence, it is obvious that

fla-p="=1

Using the last identity integration from [ to [ — z, get

- / l—x
f(ea) = AL )@f)él ¥1()d€ + £(0).

Taking into account that fo(0) = ‘pOT(O) + C1 by (17) and using our notation, obtain

fil—az) = @ n % l D1 (€)dE + “”02(0) n ‘plT(l) +Cy, zelo,l], (19)
l—x

and by (13) get

T 2 Y L U2 U} (20)

Now let us find the control actions p(t) and v(t). Generally speaking, the solution to the Cauchy problem
in the domain © as T = [ could be found and the resulting expression could be substituted into (14) and (15)
respectively. We find another way that does not require solving the Cauchy problem.

Substituting (16) sequentially (13) and (14), we obtain

u(t) = Vo(t) + Vi (6), (21)
b(t) = Vi(t) + Vi (1), (22)

l l
wxwzlkmanﬂﬂ¢meyém@xme+w@, (23)

Vo(t) = fi(=t) + go(t), Vi(t) = foll —t) + g1 (L +1), t €0,1].
Replacing t — £ = z in the first integral of (23), and t + & = [ + z in the second, we obtain

/k dz—l—/ ki(z+1—t,t)g(l + 2)dz =

:/ kit —2,t)f(z )dz+/0tk(z+lt,t)g(l+z)dz+

/kt—zt 2)dz + k-(z+l—t,t)g(l+z)dz.

Substituting —z = z and [+ z = z in the last two 1ntegrals, respectively, and using our notation for the functions
f(x) and g(x), finally obtain the expression for Vi, (t).

t t

l

I—t
+/ k:i(t—i—z,t)fo(z)dz—&—/ k(s — £ 8)g0(2)dz, i = 1,2,
0 t

Replace fo, go, f1, g1 with expressions from (17), (18) and (19), (20), substitute then the expressions into
(21) and (22) for Vi, (t) and V4, (t), respectively, and making some transformations, obtain (9), (10).
Since the functions u(x,t) belong to the class C%(£2) N C1(£2), the continuity conditions

fo(0) = £1(0), fo(0) = £1(0), f5'(0) = £1(0), (24)
90(l) = g1(1), g6(1) = g1(1), 90 (1) = g7 (1) (25)

and consistency conditions
11(0) = 0(0), (1) = @1(0), p'(0) = o (0), p'(1) = ¢1(0), (26)

v(0) = @o(l), v(1) = ¢1(1), V'(0) = ¥o (1), V(1) = ¢ (D). (27)

Mathematics series. Ne 1(101)/2021 7
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Conditions (24), (25) are necessary and sufficient for the existence of a solution to the mixed problem (12),
(13) for equation (11) in the domain © as T' = [, in the form of

Conditions (24)—(27) are necessary and sufficient for the functions ¢ (z),

w(z,t) = filr—t)+gjz+t), —il<z—t< Q-0 jl<z+t<(1+4),4,5=0,1

(:E) € 02(071) ﬂCl[O,l], ¢0($)7

Y1
W1 (x) € C0,1], there were internal boundary controls u(t), v(t) € C?(0,1) N C0, 1] satisfying conditions (13)
solutions u(x,t) € C?(2) N C(Q) to the mixed problem (12) for equation (11).

The proof of the uniqueness of the solution to the mixed problem (12), (13) and nonlocal mixed problems
(12), (14), (15) and (13), (14), (15) for equation (11) is carried out the same way as in [4]. Substituting (17)
and (18) into (24) and (25), respectively, and (14) and (15), into (26) and (27), we obtain (1)—(8).

10
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12

13

14
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A X. ArTaes

Imek TepOeJiciHiH TeH eyl YIMiH IIMKIi-TMeTTiK
backapyabiH Oip ecebi >KabIH/IA

MakaJjiaga uHTerpaJabl TUIITI iMIKi-ITeTTiK mapTTapbl 6ap 6ip esmeMl imekTiH Tepbesic TeHaeyiMeH cu-
MmaTTaJaThIH MPOIecTi 6ackapy ecebi KapaCThIPBIIFaH. OJETTeri/Iell, YaKbITThIH OACTAIKEI }KOHE COHFBI COT-
TepiHJie epKiH BIFBICYJAp MEH imek HyKresnepinin xKourmamaersl (Komm mosmiverrepi) Gepimeni. Iznesinmi
OaCKapy/IbIH YKAJIFBI3 MYMKIH OOJIATHIH €H, a3 YaKbIThI IIEKAPAJILIK, y3lTicTi kenbeitHeikrepimen Ko ece-
OiHIH, KOPPEKTIJI IIENITy KaFgalblHAH HaKThl aHBIKTAJIATBIHIBIFBI KopceTiireH. Byt imki-merTik mapr-
TapabIH TYPlI MUHAMAJIIBI yaKBIT MOHIHE 9cep eTreiTiHiH Kopcereai. Tepbemmerni xKyiteni 6acTanksl GepiireH
KYHIJIEH aJiJIbIH-aJ1a OEepLIreH COHFBI KY#re ayaapaThlH iIKi-IeTTiK 6ackapMaJsapablH KasKeTTi KoHe YKeTKi-
JIKTI YKafgaiiapbl ajbIHBII YKA3bLIIbI. backapMasap/IblH, 63/1epi HAaKThl AaHAJTUTUHKAJBIK TYPJE Ka3bLIFaH.
ConbiMeH KaTap, imkKi-merTik 6ackapy VIIiH epHEeKTepi aayaa i3memiagi obabictarbl Ko ecebin mrerri-
MimeH emec, imex Tepbestic Teneyinin xannsl menriminig dpopmysnace (Jamambep dbopMynachl) KoIIaHy
KepeK eKeH/Iiri KOpCeTiIreH.

Kiam cesdep: imekTiH Tepbesic TeHjeyi, mekapaJblk 6ackapy ecebi, Komu ecebi, MarucTpasbiablK, *KoHE
TapMaKTaJIraH KyObIp »Kesijiepi, OeHIOKAIbl apajac ecell.

A X. Arraes

OO0 oxHoIT 3a7ave BHYTpEeHHEe-KPaeBOTO yYIIPaBJIEHUS
JJig ypaBHEHHsI KOJiIeOaHUsI CTPYHbI

B crarpe paccmorpena 3ajada ynpaBiieHHsl [IPOIIECCOM, KOTOPBIM ONMCHIBAETCS ypaBHEHUEM KoJieOaHUst
OJITHOMEPHOI CTPYHBI C BHYTPEHHE-KPAEBBIMHU YCJIOBUSIMA WHTErPaJbHOrO ThMa. Kak 0ObIYHO, B HAYAJIBHBIN
7 PUHATBHBIA MOMEHTBI BDEMEHH 3aJIAI0TCs TPOM3BOJILHBIE CMEIIEHNsT M CKOPOCTH TOUEK CTPYHBI (JaHHbBIE
Komm). ITokazano, 94T0 MEUHUMAaJIbHOE BPEMs, B T€UEHHE KOTOPOI'O €INHCTBEHHLIM 00PAa30M OCYIIECTBHMO
HMCKOMOE YIIPABJIEHHE OHO3HAYHBIM 00pa30M, OIIPENEJISIeTCsl M3 YCJIOBHs KOPPEKTHOW Pa3pelrMOCTH 3a-
maau Kommu ¢ ganHbIiMu Ha TPAHUYIHOM PA3PBLIBHOM MHOro00pasuu. DTO CBUIETEIbCTBYET O TOM, UYTO CaM
BHJI BHYTPEHHE-KPAEBbIX YCJOBHUil Ha 3HAYEHHWE MMHMMAJLHOIO BPDEMEHU He Bjuser. [lojydeHbl W BBIIM-
caHbl HEOOXONVMMBIE U JOCTATOYHBIE YCJIOBUSI CyIECTBOBAHUsI MCKOMBIX BHYTPEHHE-KPAEBBIX YIIPABJIEHUIL,
MEPEBOAIINX KOJIEOATETHbHYIO CUCTEMY U3 HAYAJbHO 3aJaHHOIO COCTOSIHWS B HAIEPE]l 3aJIJaHHOEe (DUHAJIb-
Hoe cocrosture. CaMu yIpaBJeHNs BBIIIMCAHBI B IBHOM aHAJIMTHIECKOM BHJe. [Ipu 9TOM mokazaHo, 9To J1Jist
MOJTy YEHU ST BBIPAYKEHU JJTsl BHY TPEHHE-KPAEBBIX YIIPABIEHUN HYKHO BOCIIOJIB30BATHCSI HE CAMUM IIPEJICTaB-
JienneM perreHnst 3a7aqn Ko B nckomoit o6actu, a popmysioil obImero pereHns ypaBHeHnsT KOTebaHust
crpyns! (dopmysoit Jamambepa).

Kmouesvie caosa: ypaBHeHNE KOJE€OaHUsT CTPYHBI, 33/1a9a TPAHUYHOTO yIpaBienus, 3amada Komm, maru-
CTpaJIbHbIE U Pa3BETBJIEHHbIE TPYOOIIPOBOIHBIE CETH, HEJIOKAJIbHAS CMEIIaHHAA 33/1a9a.
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Well-posedness results for the wave equation
generated by the Bessel operator

In this paper, we consider the non-homogeneous wave equation generated by the Bessel operator. We prove
the existence and uniqueness of the solution of the non-homogeneous wave equation generated by the
Bessel operator. The representation of the solution is given. We obtained a priori estimates in Sobolev type
space. This problem was firstly considered in the work of M. Assal [1] in the setting of Bessel-Kingman
hypergroups. The technique used in [1] is based on the convolution theorem and related estimates. Here,
we use a different approach. We study the problem from the point of the Sobolev spaces. Namely, the
conventional Hankel transform and Parseval formula are widely applied by taking into account that between
the Hankel transformation and the Bessel differential operator there is a commutation formula [2].

Keywords: Bessel operator, wave equation, Hankel transform, inverse Hankel transform, Sobolev type space.

Introduction

In this paper we consider the nonhomogeneous wave equation
0%u
ﬁ—SHu:f(:mt), r€Ry, 0<t<T,

under the conditions

U(IL’70) = uo(x), ut(xa 0) = Ul(‘r)a
where T is fixed positive real number, generated by the Bessel operator
d? 1—4u°
S, & — 4+ 1
o da? + 4x2 7 (1)

where p > —2. The operator (1) is widely analysed in [2]. In the book [2], the author considered the Hankel
transform in the countably multinormed space 1. Between the Hankel transform and (1) there is a commutation
formula. The heat equation generated by (1) was studied in [3]. In [3], it was proved that the Cauchy problem

has a unique solution u(z,t) in the space (Uq/’l/(a_d) Y, ¢ = (2po — 1)/(2po), for the interval 0 < t < T,

19’51/ (b+d)
T < (4epo)~1(d/2)*0, d < a. Where (UZ,Z;,/l(;l(;i)d))/ is dual for UZ,;;,/l(;l(;i)d)' Here Uz’;’/l(?(;i)d) is a linear space

(see [3]), where the topology over this space is generated by the norm

1o =supls =25 0 (| (35 =9) o] = | (254 0) 9] )

A generalized Bessel operator is given by the following expression

d? 2u+14d 9

dz? x dx’ 2)
In [1] the author studied the operator (2) in the setting of Bessel-Kingman hypergroups and as an application
studied the homogeneous wave equation. In the paper [1] it is studied radial solutions of the Cauchy problem
for the wave equations in the multidimensional unit ball B¢, d > 1. For more information about the analysis
associated with the generalized Bessel operator, we refer to [4-10].

*Corresponding author.
E-mail: bekbolat@math.kz
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1 The test function space

The space H,, is defined for each 1 € R as follows (see [2]):
Definition 1. H, is a space of complex-valued, smooth functions and for each pair of m,k € Z, with the
seminorms

V()2 sup [z (@ D) (a7HTE f(x))] < oo
0<z<oo

Lemma 1. H, is complete. Thus, it is a Fréchet space.
We denote by H,, the dual of H,,. H,, is also complete.
We introduce following linear operators:

N, f(z) 2 272 Dz ™" % f(z),

Now, we can rewrite (1) as follows

d? 1 — 4p?
S = My, = dx? 42
S, is a continuous linear mapping as
Syt Huy — Hy-

2 The Hankel transform and its inverse

If > —%, for every ¢ € H,, we can define the conventional Hankel transform

B(0) = (1, 0)0) = [ " AT ay)o(@)dz, 0 <y < oo (3)

Here, the kernel \/zyJ,(zy) is an eigenfunctions of the operator S, (1).
Lemma 2. (|2]) Assume that > —1 and f € H,. Then

hu(Suf) = _y2huf- (4)

Theorem 1. (|11]) Let f € L. If f is a bounded variation in a neighborhood of the point = = x, if u > f%,
and if F(y) is defined by (3), then

317Ge0) + flaa = 0] = F = [ F ()G, (o). )

Theorem 2. ([2]) The Hankel transformation h,, is an automorphism on H,,, for > —1.
Theorem 3. ([2]) Let p > —1. If f(z) and G(y) are in L*(0,00) then

/ " f @)y C) () = / T F)CW)dy.
0 0

Definition 2. ([12]) For s, € R and 1 < p < oo the Sobolev type space G? is the set of all tempered
distributions u € H' such that U is locally integrable function over I := (0, c0) and

[l

b= [ QAP < .
0

In view of the Parseval formula

1
lull3 =013 5> -3, (6)
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it follows that
0.2/7\ _ 72
G, (I) = L*(I).

Theorem 4. ([12]) The Sobolev type space G};P, 1 < p < 00, is complete.
Theorem 5. ([12]) H,, is dense in G;P, 1 <p < oo,Vs € R.

3 Wave equation generated by the Bessel operator

In this section, we consider the Cauchy problem for the nonhomogeneous wave equation generated by the
Bessel operator on the Qr := {(¢t,z) : t€[0,T], « € R;}. Our aim to prove that the Problem 1 has a unique
solution in the space C*([0, T}, L*(I)) N C([0, T], G}*(I)).

Problem 1. Let T be a fixed positive number. We aim to find a function v = wu(t,z) satisfying the
nonhomogeneous wave equation

utt(tvx) - S}Lu(tvx) = f(t7l'), (t,.’E) S QT7 (7)

under the conditions
(0, x) = up(x), (8)
ut (0, ) = uy (). 9)

The Problem 1 has solution in the space C*([0,T], L*(I))NC([0,T], G};*(I)) and as a result we obtain following
theorem:

Theorem 6. Let p > —1/2 and assume that f € C([0,T],G}*(I)) and ug,u; € G);*(I). Then the Problem
1 has a unique solution u and it can be represented by the expression

siny(t — 7)

u(t,x) = /OOO \/@J#(a:y)/o F(r,y) drdy+

Amww@mwmwfﬂfhy+4mww@@w%@nm@mm

where F'(7,y), Up(y) and Ui (y) are Hankel transforms of the functions f(¢,z), uo(z) and u;(z), respectively.
Proof. By using the Hankel transform, we can show the uniqueness of the solution if the later exists. First,
we prove the existence of the solution. After using the Hankel transform h,, (3) and (4) for (7)-(9), we obtain

Utt(tay) + yZU(ta y) = F(tvy)’ Yy e R-‘rv (10)
UO,y) =Uo(y), v€ Ry, (11)
Ui(0,y) =Ui(y), y€ R, (12)

Solution of the equation (10) is

U(t,y) :(/Ot F(;’ v) cos(yr)dr + A(y)) sin(yt)+
( _ /O F (;’ Y) in(yr)dr + B(y)) cos(yt). (13)

By using initial conditions (11)—(12) for (13), we have

Ult,y) = /0 F(r, y)smy(;T)dT + Ui (y) Sml(jyt) + Uo(y) cos(yt).

After using the inverse Henkel transform h ;' (5), we obtain that the solution of the problem (7)(9) is given by

t—7)

o0 t .
wwzl ﬁwmwAFww%%f—w@+

/m¢w@mwﬁmw“““@+mwnwm0@.
0 Yy
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F < G denotes F' < CG for some positive constant C' independent of F' and G.
Let f € C([0,T],G}*(I)) and ug,u1 € G);*(I). By taking into account the definition of the space G)*(I)
(Definition 2), we obtain

el =10+ 20 = [0+ 20| dy

<[ \<1+y2> / tF(r,y>my(y’““”dT'2dy+ I ]<1+y2>U1<y>Si“(yt) “ay

Y
+/0‘>° |(1 + ) Us(y) cos(yt)’2 dy.

Now, we are going to do some necessary calculations, as following

[e%e] t . B 2
/ ‘(lﬂ/z)/ F(T,y)my(tﬂdT‘ dy
0 0 Yy

/Ow|<1+y2>/OtF<T,y>W.<tT>d72dys/0°° (et [ 1PGwiar)

o0 . T 2 (e’ T ) ) B T )
s/o (1+) (/ |F(t,y>|dt> dys/o / (492 F(t,y)| dtdy—/o () el

here we used the Holder’s inequality and

e 9 sin(yt) 2 e 9 sin(yt) 2
(1+y9)Ui(y) dy = (L+y")Us(y) -t dy
0 Y 0 yt
S [ 10+ 0Py = e
0 M
Consequently, we have
T

Mg S [0yt + kg + ol (14)

From (14), we obtain
”uHQC([O,T],GfL’Q(I)) = Or?ta<XT Hu( )H2 1 2 < ”fHC( 0,T], (1)) + ”ul”QG‘lLZ + HUOHZ}LQ

Now, for us we have

et (8, = [Use ()3 = /Ooowm(t,ynzdy: /OOO|F<t,y>—y2U<t,y>|2dy

oo

< [ PGP [ Uy S IFEOE+ [ 10U
0 0 0
= |13 + llult, -)Iléh,z,
by using the Parseval formula (6). Thus, we obtain
||U||2cz([o,T],L2(1)) ~ ”fHC( (0,7),L2(1)) T ||UHC( [0,7],GL2(I))

S ”fHé([o,T]’sz( + HUHC ([0,T7], G}LZ(I)) ~ ||f||2 c([o,T], Gl 2(I)) + HulH 1 2+ ”uOHé}L2

The existence is proved.
Let us suppose that u; and us are two solutions of Problem 1. Then u(t,x) = uq(t,2) — ua(t,x) is the
solution of following problem:

u(t,z) — Spu(t,z) =0, u(0,2) =0, u(0,2)=0.

Above problem has only trivial solution u(¢,2) = 0, showing the uniqueness of the solution of the Problem 1.
The uniqueness is proved.

14 Bulletin of the Karaganda University



Well-posedness results for the wave...

Acknowledgements

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic
of Kazakhstan (Grant No. AP08052028).

10

11
12

References

Assal, M. (2008). Generalized wave equations in the setting of Bessel-Kingman hypergroups. An Internati-
onal Journal for Theory and Applications, 11(3), 249-257.

Zemanian, A.H. (1968). Generalized Integral Transformations. Interscience, New York.

Pathak, R.S. (1985). On Hankel transformable spaces and a Cauchy problem. Can. J. Math., 37(1),
84-106.

Albeverio, S., Hryniv, R., & Mykytyuk, Ya. (2007). Invers spectral problems for Bessel operators. J. di-
fferential Equations, 241, 130-159.

Ciaurri, O., & Roncal L. (2014). The wave equation for the Bessel Laplacian. .J. Math. Anal. Appl., 409,
263-274.

Dostani¢, M.R. (2014). Spectral properties of the operator of Bessel potential type. J. Math. Anal. Appl.,
419, 255-272.

Haimo, D.T. (1965). Integral equations associated with Hankel convolutions. Transactions of the American
Mathematical Society, 116, 330-375.

Hirschman, I.I. (1960). Variation diminishing Hankel transforms. J. Analyse Math., 8, 307-336.

Masood, K., Messaoudi, S., & Zaman, F.D. (2002). Initial inverse problem in heat equation with Bessel
operator. International Journal of Heat and Mass Transfer, 45, 2959-2965.

Zaidman, S. (1991). Distributions and Pseudo-differential Operators. Copublished in the United States
with John Wiley and Sons, Inc., New York.

Watson, G.N. (1922). A treatise on the theory of Bessel functions. Cambridge at the university press.

Pathak, R.S., & Pandey, P.K. (1997). Sobolev type spaces associated with Bessel Operators. Journal of
mathematical analysis and applications, 215, 95-111.

B. Bekbosat, H. TokmarambeToB

Beccesnp onepaTopbl apKblibl TybIHIaFaH TOJKbIH TEHJEY1
VIIiH TYPaKTBLIBIK HOTHXKeJIepi

Maxkanana Beccenn onmepaTopsl apKbUIBI TyBIHIaFaH OIPTEKTI €Mec TOJKBIH TEHIEYl KapacThIpbLIFaH. bec-
CeJIb OIepaToOpPhbl apKBLIbI TYbIHIAaFaH OIPTEKTI eMec TOJKBIH TeHJeyl IIeiMiHiH 6ap KoHe >KAJFbI3/IbIFbI
mostesienrer. lemrimuiy Typi kesripinren. CobosieB TunTeC KEHICTIKTE anpHOpJIbI barajaysiap aJIbIHFaH.
Byn ecenn asmram per M. Assal [1] xymbiceiama Bessel-Kingman runeprpynmaceiaga kapacThipbuiran. [1]
2KYMBICBIH/Ia, KOJIJAHBLIFAH 9/IiC YHIPTKI TeopeMachiHa K9He OFaH OallyIaHBICTHI Oarajay/iapra Heri3/ereH.
MaxkaJsia aBTopsapbl O6yJ KyMmbicTa 6acka ojic Koamanran. Ecenm CoboJieB KeHICTIr Ko3KapachlHAH 3€pT-
TesireH. Aran aliTkanga, Xankeab TypJaeHaipyi xkoue [lapceBasib dhopmyachl, XaHKe b TYPJICHIIPY] KoHe
Beccenn nuddepenimanabik ornepaTopbl apachlHIa KOMMYyTalus (popMy/iackl 6ap eKeHi ecKepijie OThIPBII
[2], keniHeH KO/AHBLIABL.

Kiam ceadep: Beccenb oneparopsl, TOJIKBIH TeHIEyl, XaHKeIb TYpJIeHAIPYi, Kepi XaHKeIb TYypJaeHmipyi,
CoboJjieB TANITEC KEHICTIK.
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b. Bekbonar, H. Tokmaramberon

PesynbTraThl KOpPPEKTHOCTH BOJTHOBOTO yYpaBHEHUH,
MMOPO2KJAeHHOro oneparopoM Beccess

B crarpe paccMOTpeHO HEOIHOPOIHOE BOJHOBOE ypaBHEHHUE, MOPOXKJIEeHHOe omeparopoM beccens. Toka-
3aHbBI CyIeCTBOBAHNE M €IMHCTBEHHOCTb PEIEeHUsI HEOAHOPOHOIO BOJIHOBOIO YPaBHEHUS, HOPOXKIECHHOIO
oneparopoM Beccenst. [Ipuseneno npencrasienue pemrenus. [loydensl anpropHbie OIEHKH B IIPOCTPAHCT-
Be cOBOJIEBCKOro THUa. JTa npobaeMa BlepBble Oblta paccMorpena B padore M. Assal [1] B runeprpymme
Bessel-Kingman. Merog, ucnosnbsyemsiii B [1], ocHOBaH Ha Teopeme CBEPTKM M CBSI3aHHBIX C Hell OIeHKAaxX.
ABTOpaMH CTaThU UCIOJIL30BAH JIpyroil moaxox. IIpobrema m3ydena ¢ Touku 3penus: npocrpancts Cobo-
JeBa. A nMeHHO npeobpaszoBanue XaHkess u dopMmysia [lapceBasisi MMPOKO MPUMEHSIIOTCS € yYETOM TOrO,
9T0 MexK1y npeobpazoBanueM XaHkess u auddepeHnaabHbIM oneparopoM Beccestst cynecTByeT KOMMYy-
TanuonHast opmyia [2].

Kmoueswie caosa: oneparop Beccesst, BommHOBOe ypaBHeHUe, mpeobpa3oBanne XaHKe s, 00paTHOe mpeodbpa-
30BaHre XaHKeJsl, IPOCTPAHCTBO CODOOJIEBCKOTO THIIA.
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On the boundedness of the fractional maximal operator
on global Orlicz-Morrey spaces

The article deals with the global Orlia-Morrey spaces GMas ., 9(R"). We find sufficient conditions on pairs
of functions (¢, n) and (P, ¥), which ensure the boundedness of the fractional maximal operator M, from
GMs,,,6(R") in GMy ;,6(R™). It is proved that under some additional conditions on the function ¢, the
conditions obtained are also necessary. In the proof, the boundedness condition is essentially used, the
maximal Hardy-Littlewood functions and the estimate of the norm of the characteristic function in global
Orlicz-Morrey spaces are used.

Keywords: Orlicz space, Morrey type space, the fractional maximal functions, the global Orlicz-Morrey
spaces.

Introduction

The classical Morrey space was introduced in the works of Charles Morrey in 1938 [1] in connection with the
study of the solution of quasilinear elliptic differential equations. Inrecent decades, the boundedness of various
operators in spaces of Morrey type has been actively studied. This paper, we consider the boundedness of the
fractional maximal functions in global Orlicz-Morrey spaces. We note that the issues of the boundedness of the
fractional maximal operator and the Riesz potential in various function spaces are well studied. For classical
Lebesgue spaces they are detailed in monographs [2, 3].

We give definitions of the classical operators of the theory of functions and various Morrey spaces of interest
to us and some papers in which the boundedness of these operators in these spaces is considered.

The Hardy-Littlewood maximal operator

1
Mf(x) = sup ————
r>0 | B(z,7) | B(z,r)

| f(y) | dy

is bounded on L, for 1 < p < oo.
Let f € L{¢(R™). The fractional maximal operator M, are defined by

Maf(ac)zsup|B(:v,r)\%_1/ | (y)]dy, 0 < a < n,
B(z,r)

r>0

where B(z,r) is an open ball centered at a point & € R™ of radius r > 0. If & = 0, then My = M is the
Hardy-Littlewood maximal operator.
The classical Morrey spaces M, »(R™) are defined as the set of all functions f € LLOC(R”) for which

I fllaz, 5 (Rm) = SHPOT”/” | f 1z, (B

x,r

where 0 < XA < n, 1 <p < oco. It’s clear that ||f||Mp,0(Rn) = ||f||Lp(Rn)7 ||fHMp1LL(Rn) = ||fHLx(Rn).
P
Let 1 < p < 00, w be measurable non-negative function on (0, 00), not equivalent to zero. The generalized

Morrey spaces M), .y = M, .,(.)(R") are defined as the set of all functions f € Lé"c(R") with finite norm

1flla,00, = sup (WO fllL,Br)) < o0
z€eER™,r>0

*Corresponding author.
E-mail: aitbekovna3@mail.ru
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The generalized Morrey space M, ,,.) coincides with the classical Morrey spaces for w(r) = r~* where
0<A<.

The generalized Morrey space M, .y = M, ,,(.)(R") introduced by (Mizuhara, Nakai 1990, 1994) [4, 5] and
they were reviewed in [6], in which various sufficient conditions are given for the boundedness of the maximal
Hardy-Littlewood functions, the fractional maximal functions and the Riesz potential in these spaces. Global
Morrey-type spaces GM,, g ,.)(R") and the local Morrey spaces were considered by of Burenkov V.I., Guliev
V.S., A.Gogatishvili, R. Mustafaev ([7-9]), in which various sufficient, and for some values of the parameters,
necessary conditions for the boundedness of the maximal Hardy-Littlewood functions, the fractional maximal
functions in these spaces are obtained.

Let 1 <p <o00,1 <8 < o0, wbe measurable non-negative function on (0, c0), not equivalent to zero. The
global Morrey spaces GM),, g ...y = GM,, g (. (R") are defined as the set of all functions f € LLOC(R”) with finite
quasinorm

1 flleas, o0y = sup o) fllz, B Le©,00)5
rzeR™

where B(z,r) is an open ball centered at a point z € R™ of radius r > 0.

The spaces GM, g.,(.)(R") coincides with the generalized Morrey space M, ,.)(R") at 6 = co.

The results on the boundedness of various classical operators in the theory of functions in global and local
Morrey spaces (until 2013) are presented in review articles by V. I. Burenkov [10, 11].

Another well-known space that generalizes Lebesgue space L, is the space introduced by Orlicz ([12]).

We recall the definition of Young functions.

A function @ : [0, +o00] — [0, 00] is called Young’s function if ® is a convex function, left continuous, and
such that

rl_l}rﬁ()@(r) =®(0) =0, TEI_POO(I)(T) = 0.

From the convexity of the function and ®(0) = 0 it follows that any Young function is increasing.

If there is s € (0,00) such that ®(s) = oo, then ®(r) = oo for r > s.

Let E be the set of all Young functions ® such that

0 < ®(r) < +oo,

for
0<r<+oo.

If ® € E, then ® is absolutely continuous on every closed interval in [0,00) and bijective from [0, c0) to
itself.
For a Young function @, the set

Lo(R™) = {f € LY*(R™) : / O (k|f(z)])dx < +o0, for some k > 0}
is called Orlicz space. In the works [13, 14] the questions of the boundedness of classical operators of the theory
of functions in Orlicz spaces were studied.

If &(r) =rP,1 < p < oo, then Lg(R™) = Ly(R™). If &(r) =0 (0 < r < 1) and ®(r) = oo (r > 1), then
Ls(R™) = Loo(R™).

Lg(R™) is a Banach space with respect to the norm

Il f llg(rry=1nf{A>0: /n D |f(>\x)|)d$ <1}

‘We note that

/@)
f o<

For Young’s function ® and 0 < s < 400 let

O (s) =inf{r >0:d(r) > s}.
If ® € E, then ®~! this is the usual inverse function for ®. We note that

B (r) <r <O7(r), for 0 <r < c0.
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A Young function ® is said to satisfy the As-condition, denoted by ® € Ao, if

O(2r) < k®(r), for r >0

for some k > 1.
A Young function ® is said to satisfy the Va-condition, denoted also by ¢ € Vs, if

1
< — >
d(r) < qu)(kr),r >0

for some k > 1. The function ®(r) = r satisfies the As-condition but does not satisfy the Vj-condition.

If 1 < p < oo, then ®(r) = rP satisfies the Va-condition but does not satisfy the As-condition.
A Young function ® is said to satisfy the A’— condition, denoted also as ® € A/, if

O(tr) < k®(t)®(r),t, 7 >0

for some k > 1. If ® € V5, then ® € F.

The boundedness conditions for classical operators of the theory of functions in generalized Orlicz-Morrey
spaces Mg, were considered by V.S.Guliyev, F.Deringoz, S.Samko and others [15-18].

The purpose of this paper is to consider global Orlicz-Morrey spaces GMg , g(R™) (the corresponding
definition is given in the next section) and find conditions for the boundedness the fractional maximal functions
in these spaces.

1 Definitions, notation, and auziliary statements

We give the definition of global Orlicz-Morrey spaces in the following way:

Definition 1. Let o(z,r) be a positive, measurable function on R"™ x (0,00) and ® be a Young function,
1 < 6 < co. We defined the global Orlicz-Morrey spaces GMa,, 0 = GMs , 9(R™) as the set of all functions
f € L%°(R™) with finite quasinorm

I fllcMy oo = Sup (@, ) @ (IB(@, )| "M ll Lo (B Lo0,00)-
e s

At 0 = oo the corresponding space is called the generalized Orlicz-Morrey space Mg .
Let o(z,7) be a positive, measurable function on R"™ x (0,00) and ® be a Young function. We denote by
Mg, the generalized Orlicz-Morrey spaces, the space of all functions f € L%¢(R™) with finite quasinorm

[fllate, = sup (7)1 (IB(@, )| "I fll Lo (B2
zER™,r>0

At &(r) =rP,1 < p < oo the corresponding global Orlicz-Morrey space is denoted by GM,, , 9(R™):
GMppo(R") = GMo,p0(R")|o(r)=rr-
At
pz,r) = (@7 (r™ ")/ (r )
the corresponding global Orlicz-Morrey space is denoted by GMg » 9(R™):

GMoo(R") = GMa,p |p(z,r)=-1(r—n) /01 ()

At ®(r) = 77,1 < p < oo and p(z,7) = (@~ 1(r~")/®~1(r~)) the global Orlicz-Morrey space coincides
with the Morrey space, i.e. GM) x 00 (R") = My, A (R™).

Let ® be a Young function. We denote by Qg the sets of all positive measurable functions ¢ on R™ x (0, c0)
such that for all t > 0,
oY (|B(z, )|

TER™ Lp(x, T)

||Loo(t7oo) < 00,

and
sup [[o(z,7) "ML 0,0 < 00,
TER"

respectively.
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We give auxiliary statements that we will need in the proof of the main statement.
By x B we denote the characteristic function of the set B.
Lemma 1. [16] Let ® be a Young’s function and B a set in R™ finite Lebesgue measure. Then

(o pep—
(2]

Lemma 2. [16] Let 0 < @ < n, 1 < 6 < oo and function ¢(z,t) satisfies condition
2o, t) + [Ir* " Ly (t.00) < Cp(,1)”

for some 8 € (0,1) and for each € R™ and ¢ > 0. Then there is pointwise inequality
Mo f(z) < C(Mf(@)" - [|fllorra, 0

Lemma 8. [16] If By = B(xo,79), then r§ < CM,xp,(x) for every x € By.
A function ¢ : (0,00) — (0,00) is said to be almost increasing (respectively, almost decreasing) if there
exists a constant ¢ > 0 such that

o(r) < Cp(s) (respectively p(r) > Cp(s), for r < s).

For Young’s function ® we denote by £ the set of all almost decreasing functions ¢ : (0,00) — (0, 00) such

that ¢ € (0,00) — % is almost increasing.

Lemma 4. Let By := B(xg,r0). If ¢ € £4 then there exist ¢ > 0 such that

< ||XBO ||GM<1>,¢,9 <

¢(ro) o(ro)’

Proof. Let Bs = B(x, s) arbitrary ball from R™. If s < r, then ¢(r) < Cp(s) and according to Lemma 1 we
have:

1 C
e(s) 1 (1Bl Y Ixsl La(r) < =) < o0
Hence N
le(s)~ @~ 1(|B| 1)HXB||L~1>(B)||L9(O,00) Sm.
Means
P P yp-p———
T2 ()| L 0,00

If s > r then by ¢ € £ we have:
o(r) ©(s)
<C
O=1(|Bo|7t) T o (|BIY)

therefore o
1a—1 —1
i} B <
o(r) (IBI" MixsollLas) < 20
it follows that
sl Ep—
BllGMg o0 = .
T2 ()] Lo (0,00)

Lemma 4 is proved.
2 Results for fractional mazximal operator in global spaces of Orlicz-Morrey type

Theorem 1. Let ® € A’ Ny, and 0 < a < n, 1 <0 < oo. Let ¢ € Qg satisfies condition

ro(z,r)+ sup t%p(x,t) < C(p(a:,r)ﬁ
r<t<oo
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for some B € (0,1) and for every € R" and r > 0. Define n(x,r) = ¢(z,r)?, and ¥(r) = &(r'/#). The
maximal operator M the bounded in GMg , ¢(R"), then the operator M, is bounded from GMg , 9(R") to
GMg ,o(R").

Proof. By Lemma 2, we have

My f(z) < C(Mof(x))? - ||f||},~?\fw‘e,w € R",
therefore
1— n
IMaf@)Lam < CNMaf) ) - I1F1525, o0 € B,

where B = B(z,t).
It follows from the definition of Orlicz space that

(Mf@)* Mf@) |
/B“I’(annL@(B))d /B(‘I’annL@(B))d =1

Hence
1) Nwmy) < IMFIL, 5y
SO

1Mot < CIMEIE, 5 - 1F1GHE -

Based on this inequality, given the boundedness of the maximal operator in GMg , 9, We obtain

[Mafllarrs 0 = sup Iz, ) O (IBIIMafllLy () 2o (0,00) <

< Clf i~ 592 ol )72 UBIIM I )L 0.) =

= CllfllEaty o M F1rt, o < C - f lGpta o
Theorem 1 is proved.
Theorem 2. Let @ € A, 0<a<n,1<6<o0,p€Qq, BE(0,1),n(t)=¢(t)?, and U(t) = d(t/5).
1. Let ® € 772 and the maximal operator M the bounded in GMg , 9(R™), then the condition

t(t) + 1 o (1)l 1, (1,00) < Cop(t)?

for all t > 0, where C' > 0 does not depend on t, is sufficient for the boundedness of M, from GMg ,o(R™) to
GMg ,o(R").
2. If p € £, then the condition

A < ¢
o <
o()B 1002 = To ) L 0,00)

(1)

is necessary for boundedness of the operator M, from GMg ,¢(R") to GMy 9(R"™).
3. Let ® € Vy. If p € £4 satisfies the regularity condition

1o (r) Ly t.00) < CY(2)

for all t > 0, where C' > 0 independent of ¢, then the condition (1) is necessary and sufficient for the boundedness
M, from GMg ,0(R") to GMy y(R"™).
Proof. The first part follows from Theorem 1. To prove the second part, we put By = B(xq,t), by Lemma
3, we have
t* < CMuyxp,(z), © € By.

We estimate by Lemma 1 ana Lemma 3
t* < CU™H(|Bo| ™) IIMaxsoll Ly (5o)-

Hence 4o
J— -1 —_
%SCU YO (|Bol ™)1 Maxs, | Ly (Bo)-
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Therefore 1o )
—_ o) < C|| My <C <C

|77(t) [L6(0,00) < CliMaxsollams.,.o < Clixsollanms ..o < T
The third part follows from parts 1 and 2. Theorem 2 is proved.

Corollary 1. Let 0 < a <n,1 <@ <oo,1 <p<g<ooandpeQ,=Q.

1. If (t) satisfics

7")”Le(ﬁw) .

. n
essinfycscoo 90(5)5 P
sup

n
r<t<oo tr

< Co(r),

then the condition

t2o(t) + sup %p(r) < Cp(t)t,
t<r<oo

for all t > 0, where C > 0 independent of ¢, is sufficient for the boundedness of M, from GM, ,¢(R™) to
GM » G(R").

4,09,

2. If p € £, = £L4», then the condition

tp(t) < Cp(t) T, (2)

for all ¢ > 0, where C' > 0 independent of ¢, is necessary for the boundedness of M, from GM, ,¢(R™) to
GMq N G(R").
3.If o € £, then the condition (2) is necessary and sufficient for the boundedness of M, from GM,, , 4(R")
to GM » (R™).
q,09,0
e~ 1(t ™)

o(t7), B € (0,1),

at Theorem 2 we get the following result.
Corollary 2. Let ® € AN Nyg, U(t) = &(t/#) and B € (0,1). If

O L(r—m)
sup r¢ < Ct*
t<r<poo @_1(T_)‘) o

for all £ > 0, where C' > 0 independent of ¢, then the condition

Q™)

ta < R ﬂ—l

=)

for all £ > 0, where C' > 0 independent of t, is necessary and sufficient for the boundedness of M, from
GMQ)\(Rn) to GM\I/)\(Rn).

Remark. The Theorem 1 and 2 are an Adams type result. The similar theorem for the generalized Orlicz-
Morrey spaces Mg, was proved in [16-18].
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H.A. Bokaes, A.A. XaitpkyioBa

Beuaiek makcumaJsiabl oriepaTopabIiH
Opiau4a-Moppu KeHiCTiTiHJeri nmekapachl

Maxkanana GMas,, 0(R™) ranaMasik Opiaua-Moppu kenicriri kapactbipbuirad. Asropaap (¢, n) xoue (P, ¥)
BYHKIUSTTAPBIHBIH, 2KYTITapbI YITiH M, GeJek MaKCUMAJIIbI ONIEPATOPBIHBIH, MTEKAPaChIH KAMTaMAaChI3 €Te-
TiH KeTKimKTI maprrapapt tankad. GMe 0 (R™) xenicririnen GMy 5 ¢(R"™) kenicririne ¢ dyHKuuscs
OolibIHINIA Kefbip KOCHIMINA 3aHIBLIBIK IMapTTAapbIHa AJbIHFAH IIapTTap Ja KaXKeT eKEeHJ I J1oJIelIeH-
mi. Jlomenmeyme Heri3iHeH MIEKTIIIK MapThl MAKCUMAJIL XapAu-J[UTTBY (byHKIUSIaAPHI KOHE FAJTaAMIBIK,
OpJuina-Moppu kenicriringeri cunarraMasibl, GYHKIUS HOPMAChL KOJJIAHBLIFAH.

Kiam ce3dep: Opiinu kenicriri, Moppu tunti keHicrik, 6esiimek MakCuMaJ bl (DYHKIMAIAD, YKAJIIbLIaHFaH
OpJuina-Moppu kenicrikrepi.
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H.A. Bokaes, A.A. Xaiipkysosa

O6 orpaHMYEeHHOCTHN JAPOOHOTO MAaKCHMAaJBHOTO OllepaTopa
B IJI00AJILHBIX MpocTpaHcTBax Opamdya-Moppu

B crarbe paccmorpens! riobasbable npocrpancrsa Opsmda-Moppu GMs o 9(R™). ABTOpsl HaxondT H0-
CTaTOYHbIE yCJIoBHUs Ha Napbl dyHKuui (¢, n) u (P, ¥), KoTopble 06eCIeINBAIOT OIPAHNIEHHOCTD JIPOGHO-
MakcuMaJsbHOro oneparopa My u3 GMs , 0(R™) B npoctpanctBo GMy , ¢(R"). Jokazano, 4To npu Heko-
TOPBIX AONOJHUTEJILHBIX YCJIOBUAX PEryJIdApHOCTH Ha d)yHKHI/HO @, NOJIYyYEeHHbI€ YCJIOBUA ABJIAIOTCH HeO6—
xonuMbIMH. [Ipu J0Ka3aTesbCTBe CYIIECTBEHHO HMCIIOJb30BaHbl YCJIOBUE OTPDAHUYEHHOCTH, MAaKCHUMAJIbHBIE
byukun Xapau-J/IuTaByaa v orieHKa HOPMbI XapaKTEPUCTUIECKON (DYHKITUU B TJI00ATBHBIX POCTPAHCTBAX
OpJuinua-Moppu.

Karoueswie caosa: npocrpanctBo Opiinya, npocrpancTso tuna Moppu, npobHble MakcuMasbHble DyHKIUH,
riobasibHble pocTpancTBa Opanya-Moppu.

Bulletin of the Karaganda University



DOI 10.31489/2021M1/25-36
UDC 519.852

S.M. Davoodi®, N.A. Abdul Rahman

School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia
(E-mail: smd1376@gmail.com, aswad.rahman@usm.my)

Predicting the optimal solution
in fuzzy linear programming problem

In this paper we try to define a percentage form of LR fuzzy numbers which is a useful form of fuzzy
numbers and its’ arithmetics. So, we show how the maximum variation range of optimal value of fuzzy
objective function can be predicted by using this form of fuzzy numbers. Since fuzzy problems are generally
solved through a complicated manner, the purpose of this study is releasing a kind of prediction for the final
solution in the way that the manager can access to an outlook to optimal solution (Z*) without solving the
problem. Finally, optimal value of fuzzy objective function on fuzzy linear programming is predicted when
maximum variation range of fuzzy variable have been predetermined.

Keywords: Percentage form of fuzzy numbers, Fuzzy number, Fuzzy linear programming, Fuzzy Arithmetic

Introduction

In the recent past the fields of management science, operational research and industrial engineering have
dedicated a lot of attention to decision making theories, decision making methods and application. For the past
sixty years, many research works in these areas have been documented. However, there is a need to develop
new methods that would fit real world problems in the context of linear programming. The traditional methods
of linear programming modeling require precise model parameters and this, is not obtainable in real world
problems. So, researchers usually estimate model parameters by themselves and These estimated values of the
model parameters may not be precise.

Tanaka et al. [1] proposed the concept of fuzzy mathematical programming based on the fuzzy decision
framework of Bellman and Zadeh [2]. Zimmerman [3] introduced the first formulation of fuzzy linear programmi-
ng (FLP) to address the impreciseness of the parameters in linear programming (LP) problems with fuzzy
constraints and objective functions. A number of researchers have exhibited their interest to solve the FLP
problems [4-13] and fully FLP problems [14-23].

A new form of fuzzy numbers called percentage form of LR fuzzy numbers (PLR fuzzy number) is now
introduced in this paper. This form of fuzzy numbers are applied to many discipline such as industrial application,
mathematical modeling and management sciences. Arithmetic operations of this form of fuzzy numbers and
some properties of it is studied. Also the prediction process of fuzzy optimal solution and its variation range is
described in this paper according to properties of this form of fuzzy numbers.

The solution of FLP problems and fully FLP problems cannot be calculated by applying the majority of
existing methods in which some or all the parameters are represented by unrestricted LR fuzzy numbers. In
addition, there are large computational procedure with some existing methods [20]. By predicting the range
of fuzzy numbers’ change and reaching to an outlook of optimal solution and also having an alternating fuzzy
variables’ frequency range on demand, we are able to find the optimal solution with ideal frequency range.

Preliminary Concepts

In this section, we introduce some basic definitions on fuzzy set theory and the main concepts needed in
the paper. _ B
Definition 1. Let X be a collection of objects denoted generically by z. A is called a fuzzy set in X if A is
a set of ordered pairs: B
A={(z,pz(2)) |z e X}

where f 7() is a membership function of 2 in p 7 such that pz(z) : X — [0,1].

*Corresponding author.
E-mail: smd1376@gmail.com
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Definition 2. A fuzzy number A is said to be a LR-flat fuzzy number, A= (al, a*, a, ,8) g » if its membership

function is defined as
a -z .
L , r<a
o
1 <

)

Tz —a"
R , x>a"
()

0 , otherwise

pale) =

where L and R are reference functions, ie., L,R: [0,4+00) — [0,1] are non-increasing that L(0) = R(0) =
1 and L(1) = R(1) = 0. The membership function of a LR fuzzy number, A = (a,a, )R, can be also

defined as
L<a—x) , z<a
o

pale) = R(xga) ., T>a

0 , otherwise

Definition 3. Let A = (a1,01,p1)z and Ay = (az, a2, B2) . be LR fuzzy numbers and r € R, (r # 0)
then arithmetic on fuzzy numbers are defined

AL @ Ay = (a) + ag, 1 + ag, B +B2) LR (28)
A, = (rai ,roq , f1) g , 7>0
(ray , —rp1, —ron)p , 7 <0
(araz , aras +agar , a2 +azfr) g , where ;4:1 =0 , }1:2 =0
Avl ® Avg _ (CLlag , 201 — alﬂg y agﬂl — CL10&2)LR s where 41 <0 5 42 >0 (29)
(a1az , arag —azfi , a1fa —azar)pp , where A1 =0 , Ay <0
(al(lg R —(1152 — CLQﬁl ,— 10 — azal)LR , where A1 <0 s Ay <0

Remark 1. We denote the set of all LR-fuzzy numbers by F(R).
Definition 4. A linear ranking function is a function R : F(R) — R, which maps each fuzzy number into a
real line, where there is a natural order.

m(ﬁ) - ;/Ol(Lh(x)—th(x))dh

where [Ly (), Ry ()] is h — cute of A.

Let A = (a,a, ) be a triangular fuzzy number then

m(ﬁ) =a+i(ﬂ—o¢).

PLR fuzzy number
Here a very useful form of fuzzy numbers is discussed and the arithmetic definition of this form of fuzzy
numbers is given. We also show that the arithmetic of this form of fuzzy numbers is simple when compared
with the current form of fuzzy numbers.
Definition 5. (PLR fuzzy number) Let
A= (a,0,8) g, a,8>0 and a#0
be the LR fuzzy number, then

A:(a,a%ﬁ%), a,8>0 and a#0
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is called PLR fuzzy number and the a and B are the left and right percentage deviation from the center of
fuzzy numbers (a), respectively. The formula to convert LR fuzzy number to PLR fuzzy numbers and back are
as follows :

A

(a,0,8) g = (a,ﬁ100%7 o |100%>
a

alal ﬁla>

A= ((L, a%,ﬁ%) = <CL, ﬁ, ﬁ

Note that, LR fuzzy numbers and PLR fuzzy number are called normal and percentage form of fuzzy
numbers respectively.
Ezample 1. Suppose A = (10,2, 3), ; is a LR fuzzy number then its PLR form is as follow:

3

A=(10,2,3),, = ( |10|100%, 0]

100%) = (10, 20%, 30%) .

Furthermore suppose A= (—50, 8%, 14%) is a PLR fuzzy number then its LR form is as follow:

~ 8 x | —50| 14 x | — 50
A = (=50,8%, 14%) = | —50, , = (—50,4,7

Definition 6. Suppose A= (a,a%, %) is PLR fuzzy number, if a = § then A is symmetric PLR fuzzy
number and we show A = (a, a%).

Arithmetic Operation on PLR Fuzzy Numbers

Let A, = (a1, 1%, $1%) and Ay = (a2, 2%, B2%) denote PLR fuzzy numbers and » € R, (r # 0) then LR
form of Ay and A, are as follows:

A= (a ailar| Bilas] A= (a aslas| Bolas]
7100 7 100 ), 7100 0 100 ),

Addition (®): According to Equation (1),we obtain

ailar| | aglag| Bilai +ﬁ2\a2|
100 100 ° 100 100 ),

_ < ailai| + aslaz| [31|a1|+52a2|>
- a1+a27 .
LR

g1 @Z2 = (fh + asg,

100 ’ 100
PLR form of above LR fuzzy number is as follow:

onfar| +aslaz|  100%  Bilaa| + Balaz| 100%)

gl S Az = ((11 + as,

100 la1 + as|’ 100 la1 + az]
_ (a1+a 041|6l1|-|-042|@2|%7 61|a1|—|—62|a2| )
la1 + ao| lar + as|

Scalar Multiplication:
Case 1: If » > 0 as a result |ra| = r|a| therefore

T ala|  Bla|
TA_(m’Tloo 100

PLR form of above LR fuzzy number is as follow:
A= ’Toz|a| y 100%7rﬂ|a| " 100%
100 |ra] 7 100 [ral
alal]  100% rBlal  100%
= ,T—— X , X
100 r|a| * 100 r|al

) = (ra,a%, f%) .

Case 2: If r < 0, similar to Case 1 we have

rA = (ra,B%,a%).
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Multiplication: _
Case 1: LetA; and Ay be non-negative PLR fuzzy numbers then |a1| = a1, |az| = a2 and |a1az| = ajas.
According to Equations (2),we have

~ = arap azay  Bray Baaz
A @Ay =
184 ((““2’ 100 > 700 “ 100 2 T 00 C“)LR

(4 araz(ar + o) araz(fy + B2)
e 100 100 .

PLR form of above LR fuzzy number is as follow:

~ ~ 100 100
AL ® Ay = <a1a2, ma5(01 + a2) % a102(B1 + fa) )

A %
100 Jaras| 100 Jarag]
=4, ® Ay = (ar1a2, (a1 + a2)%, (B1 + B2)%) -

Case 2: Let Zl = (a1, 1%, f1%) and /Tg = (ag, a2%, $2%) be non-positive PLR fuzzy numbers then
Ay ® Ay = (aras, (B1 + Ba) %, (1 + ) %) .

Case 3: Let A; = (a1,01%, $1%) is non-negative and Ay = (a2, aa%, B2%) be non-positive PLR fuzzy
numbers then

A ® Ay = (arag, (2 + 1) %, (a1 + B2) %) -

Case 4: Let A; = (a1,01%, $1%) is non-positive and Ay = (a2, aa%, B2%) be non-negative PLR fuzzy
numbers then

Ay ® Ay = (ayag, (01 + Ba2) %, (a2 + 1) %) .

In summing up, if ,L = (a1, 1%, 1%) and ;{2 = (ag, 2%, f2%) be PLR fuzzy numbers then

~ ~ arlal| + asla ay| + a
A= (a1+a2, 1]a1] alas|  Bilai| + Ba| 2|%>

a1 +ao| 7 Jar + asf

o (ra, a%, %) , r>0
| (ra, %, a%) , r<0

(a1a2, (a1 + a2) %, (B1 + P2) %) %1 =0, %2 =0
A @Ay = (ara2, (a1 + B2) %, (a2 + f1) %) , A1 20, A2 =0
(ara2, (a2 + B1) %, (a1 + f2) %) A1 z0, A2 =0
(arag, (B1 + B2) %, (an +a2) %) , A1 20, A3 <0

Proposition 1. Let A; = (a1, 1%, B1%) Ay = (ag, ¥2%, B2%) , ... , A, = (an, n%, Bn%) be PLR fuzzy
numbers and

2
-
(e}

, i:1,2,...,n}

P
N:{i‘ﬁi<0 : ¢=1,2,...,n}

then

Ko de o, - ( (zaﬁzﬁi) " <za1+z@> %>.

ieP €N ieN ieP
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Proposition 2. Let A, = (a1,01%, B1%) , Ay = (ag, 0%, B2%), ..., A, = (an, an%, Bn%) be non-negative
PLR fuzzy numbers then

ﬁ1®g2®~~®gn:(alag--~an,(a1+a2+-~-+an)%,(ﬁ1+52+-~-+ﬁn)%).

Proposition 3. Let A; = (a1,01%, B1%), Ay = (ag, 0%, Bo%), ... , A, = (an, an%, Bn%) be non-positive
PLR fuzzy numbers then

A @A @ @A, = (a1 an, (B + Ba+ -+ Bn) %, (1 + g + -+ ) %) .

Ezample 2. Let Ay = (4, 2%, 3%), Ay = (=5, 8%, 4%), A3 = (6, 9%, 5%), A= (3,2%,8%) and
As = (=3,1%, 6%) be PLR fuzzy numbers. Then P = { 7 ‘ A; - 0} ={1, 3, 4} and N = { 1 ‘ A; < O} =
= {2,5}. Multiplying these fuzzy numbers is calculated as follows:

A @A, ® A3 ® Ay ® As

= [4x(=5)x6x3x(=3), | > at D Bi|%| > ait Y. Bi|%

ie{1,3,4} ie{2,5} ie{2,5} ie{1,3,4}

- (1080,[(2+9+2)+(4+6)]%,[(8+1)+(3+5+8)]%>

_ (1080,23%,25%).

According to Proposition 1, it is observed that multiplication of fuzzy numbers by PLR fuzzy numbers is
simple and uncomplicated in contrast to LR fuzzy numbers.

Predicting fuzzy optimal solution

In this section, we describe how the maximum variation range of optimal solution (Z *) can be predicted
respectively for general form of fuzzy linear programming and special form of fuzzy linear programming problem
when the maximum variation range of fuzzy variable is predetermined.

Proposition 4. Let A1 = (a1,01%, 51%) and Ay = (a2, a2%, f2%) be PLR fuzzy numbers and ajas > 0 then

Avl ©® 112 = (a, a%, B\%)
then

min{ay, @} < & < max{ay,as}
min {1, B2} < B < max {31, B}

Proof. Without prejudice to the generality of the problem suppose a; < as as a result max{aj,as} = as
and min{a;, as} = a1. In addition,

aijas > 0= |a1 +(12| = |a1| + |a2| 75 0
then

ay < ap
ailai| < aslaq|

ailar| + aslas| < aslar| + azlas|

Q101 + Qeas
la1 + as]
a < max{ay,as} (30)

=
=

= ailai| + aglaz| < as([ai| + [az|) = az|ar + aqf
= < ap = max {a, a2}

=
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Q> o
aglaz| > agas|
atlai| + azlaz| > a1as| + ailas]
anfar] + azlaz| 2 ar((ar] + |az]) = onfar + az|
Qia; + Qa0
a1 + as|
a > min{aq, @z} (31)

> o1 =min{ag,as}

A

(3) and (4) = min{a, a2} < @ < max {ag, oz} .

Proof for B\ is similar to the proof for a. B N
Proposition 5. Let Ay = (a1,01%,51%) , Az = (a2, 2%, 52%), ..., Ap = (an, an%, Bn%) be PLR fuzzy
numbers and a;a; > 0, ¢ # j then

AdAe A, = (a1+a2+~~-+an,a%,,§%)

then
min {ag, ag,...,a,} <& <max{a,az,...,an}

and

min{617ﬂ27 e aﬁn} S B S maX{BhﬁQa e aﬂn}
Predicting mazimum variation range of objective function

Now we show how the maximum variation range of fuzzy objective function is predicted for general form of
fully fuzzy linear programming problems.
Let a fully fuzzy linear programming be defined as follow:

Min

n
or Z:ZEj ® T;
Mazx j=1
=
n or _ (32)
s.t. doay @ o~ b, i=12....m
j=1 or
=

where z; = (xj,a%%,ﬂwj%) ,Cj = (cj7acj%,ﬂcj%) , Qi = (aij,aa”%,ﬁa”%) and b; = (bi, ap, %, By, %) be PLR
fuzzy numbers fori=1,...,m, j=1,...,n.

Theorem 1. Let ¢; = (cj, Qe; %, Be; %) and z; = (zj, Qe %, Ba; %), j=1,2,...,n be non-negative PLR fuzzy
numbers and T; be feasible solution of fully fuzzy linear programming problem (5) also

n
7= (2,&%,6%) =Y & o
J=1

is the objective function of fully fuzzy linear programming problem (32) then
Z=ciT] + Ty + -+ cpTy
and

Qmin < a< AOmaxy Bmin < B < Bmaz
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where

Qpmin = Min {aQ + oy,

Qmar = MAax {aQ + oy,

Bin =min { B, + B,

Braw =max { B, + B,

Theorem 2. Let ¢; = (cj, Qe; %, Be; %) and z; = (xj, Qg %, Ba; %), j=1,2,...,n be non-negative PLR fuzzy
numbers as well as a,; € [0, s;] and 3., € [0,7;] also

n
Z=(za%8%) =Y 5o
j=1
is the objective function of fully fuzzy linear programming problem (5) then
i o) <3 e (o)

:{r,lzin n {ﬂ%} < E S _max {rj +6C]}

.....

Proof.

Vi=1,...,n, a; €[0,s;] and B;; € [0,7;] = 0 <y, <55 and 0< B, <7y
=>Vj:1,2,...,’l’b ) acJ- §a$j+a0j§5j+a0j ) ﬁ0j§62j+ﬁ0jgrj+ﬁ0j
So
i oo} < min{as, +ag)

jmax {az, +ac,} < jmax {s] + ag, }
'7m1n {Bc,} < min {,Bx] + B, }

jmax {Be; + B, } < jmax {rj +Be,}

..........

i=1,2,...n T j=1,2,...n
jmin {Bp<B< max {r;+ 0}

Example 3. Consider the following fully fuzzy linear programming problem:
Min Z=0¢ ®%) & & ® i
s.t. 411 T ® 12 @ Ta = by
Gy @ 1 @ gr @ T2 < by
Z1,To2 = 0

where El = (12 6%,4%), 52 = (20 5%,5%), 611 = (8,5%,4%), 612 = (10,5%,4%), 621 = (15,10%,8%),
522 = (18,6%,5%) b1 = (60 10%,6%) b2 = (120,6%,8%) s 51 = (ml,azl%,ﬁxl%) and fz = (iCQ,CEIz%, 512%)
be PLR fuzzy numbers. An addition maximum variation range of Z; and Z» are predetermined in Table 1.

Table 1
Maximum variation range of 7; and Z»
71 T2
S1 T1 S2 T2
Maximum variation range 6% 4% 3% 4%
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Therefor
0<ay;, <s1 = a¢ <az +ag <81+ag
= 6<qa; +ta, <s51+6=6+6=12
0<a;, <s2 = g < ag, +ae, < s+ ag,
= 5<ag, +ae <s3+5=3+5=8
0<Br1<rl = 601§6z1+ﬂc1§7’1+561
= 4< Py +PBey <1 +4=4+8=8
O<ﬁx2<r2 = 602§5$2+602§r2+602
= 5<Bey +Pe, <rao+5=4+5=9
Thus
min {ae, + g, Ay + 0z} > min{6,5} =5
max {ae, + Qg , 0, + 0, } < max{12,8} =12
and

min {Bcl + 551?17/362 + Bxg} > min {4, 5} =4
max {Bcl + 5I13502 + ﬁmz} < max {8,9} =9

According to Theorem 1 we find
p<a<l2, 1<B<9

where Z; and Z» are feasible solutions and Z = (2, a%, 3%) is a value of objective function proportional to x;

and 3. The variation range of & and B indicate that, for each fuzzy feasible solutions, & vary between 5% and
12% and S vary between 4% and 9% (See Figure 1). Especially, if 23 and 25 are optimal feasible solutions then

variation range of Z* can be predicted as follows:

7 :{(z*,a*%,ﬁ*%) ‘ a*e[5,12] , B € [4,9}}

Z

12% a% 5% z 4% % 9%
Figure 1. The variation range of left and right side of Z

Note that Theorem 2 imply that the maximum variation range of left and right side of Z* may be changed
if the maximum variation range of left and right side of fuzzy variable is changed.
In other words: _

e The minimum variation range of left and right side of Z* is independent of fuzzy variables’ variation
range. B

e The maximum variation range of left and right side of Z* is dependent on fuzzy variables’ variation range.

Predicting optimal value of objective function
Here, we describe how the optimal value of objective function in fully fuzzy linear programming problems

are predictable when all of the parameters and variables are symmetric triangular fuzzy numbers.
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Theorem 3. If A = (a,a%) and B = (b, 8%) are symmetric PLR fuzzy number and a + b # 0, then A ® B
is symmetric PLR fuzzy number. _

Proof. A = (a,a%) and B = (b, %) are symmetric PLR fuzzy number, then we can show A = (a,a%, a%)
and B = (b, 6%, %) and we have

g@§:<a+aﬂﬂ+mbyaﬂ+ﬂﬁ%>

a8 7 Jat bl

Shows that A & B is symmetric PLR fuzzy number. o o

Theorem 4. If A = (a,a%) and B = (b, %) are symmetric PLR fuzzy number and A, B % 0 , then A ® B
is symmetric PLR fuzzy number.

Proof. Analogous to the proof of Theorem 3.

Lemma 1. Let A; = (a;,a;%) and B; = (b, 8;%), 7 = 1,2,...,n be non-negative symmetric PLR fuzzy
numbers and

7=Y 405
j=1

then Z is symmetric PLR fuzzy numbers.
Lemma 2. If A = (a,a%) is symmetric triangular fuzzy number then R (ﬁ) =a.

Suppose all the parameters and variables in the fully fuzzy linear programming (5) are triangular symmetric
fuzzy numbers, then as a consequence of Lemma 1 the result of -7, ¢; ® ¥; and > 7, @;; ® T; are symmetric
triangular fuzzy numbers. In addition

R ZEj®xj —chx]
j=1 j=1
n n
R ZEU@@ —Zaum], i=1,2,...,m
j=1 j=1
9%(’51-):1)1-, i=1,2,...,m
Eﬁ(fj):xj, j:1,2,...,n

In fact, the left and right sides of PLR fuzzy parameters and variables are ignored by applying defuzzifi-
cation. Hence the fully fuzzy linear programming (5) with using ranking function is converted to crisp linear
programming as follows:

Min =
(MCLJ?) Z—Zlcj' Cﬂj
i=

a - (33)
s.t. Zai-j x; = b , i=12,....m
j=1 <
Ty Z 0
Assume that 27, j = 1,2,...,n are optimal feasible solutions of linear programming (6) then 7% = (z*,a*%) is

a prediction for the optimal objective function of model (5) where
2" =] + coxy + -+ cp,
and

jamin {ae} <a” < max {ac +s;}.

Example 4. A company produces 3 kinds of goods with high profitability. Market estimation shows that
each of these products can be sold at $865, $580 and $470 with maximum variation rate of 9%, 7.5% and 12%
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respectively. The company has 3 stages of production and each of these products require a proportion of the
capacity of these stages. Maximum capacity of each production stages and proportion of the needed capacity
for each product with its’ maximum variation rate are given in Table 2.

Table 2
Require a portion of the capacity of production stages for each products
Production Stage 1 Production Stage 2 Production Stage 3
Products Value a Value @ Value a
P1 1 0% 5 3% 3 1%
P2 0.8 0% 3 5% 2 2%
P3 2 0% 2.5 4% 1.2 4%
Maximum Capacity 200 2% 680 6% 400 3%

« : Maximum variation rate of each data

Since these goods are all best-selling, the company wants to get maximum production capacity. Here the
manager really wants to know the amount of maximum profit and variation rate of profit when maximum
variation rate of products is predetermined to be 5% and 10% respectively. This problem of goods production in
the way that profit is maximized and the restrictions are met, is formulated as the following fully fuzzy linear
programming. B

Max Z = (865,9%) ® 1 @ (580, 7.5%) ® To @ (470,12%) ® T3
s.t. (1,0%) ® T1 @ (0.8,0%) @ T2 ® (2,0%) ® T3 < (200, 2%)
(5,3%) @ Z1 @ (3,5%) @ T @ (2.5,4%) ® T3 =< (680, 6%) (34)
(3,1%) ® T1 D (2,2%) ® T2 @ (1.2,4%) ® T3 = (400, 3%)
T1,T2,23 = 0
By appealing to the ranking function for defuzzification, the above fully fuzzy linear programming is converted
to simple crisp linear programming as shown by the following

Max Z =865x1 + 580z + 47023
s.t. x1 4 0.8x9 + 223 < 200
5z1 + 322 + 2.523 < 680 (35)
3x1 + 222 + 1.2253 < 400

L1,T2,T3 2 0

The maximum value of objective function of linear programming problem (8) is (Z*) equal to 2520. Since fully
fuzzy linear programming problem (7) is simplified to crisp linear programming problem (8), Z* = 2520 is
an appropriate approximation for optimal profit irrespective of variation range of fuzzy parameters and fuzzy
variables. Then, by applying Theorem 2, according to maximum variation range of products, maximum variation
rate of optimal profit is calculated, as given in Table 3.

Table 3
Maximum variation range of products and profit for Example 4
Maximum variation range of products Maximum variation zZ*
P1 (1) P2 (z2) P3 (x3) range of profit
1 5% 5% 5% 17 % (2520, 17%)
2 10% 10% 10% 22 % (2520, 22%)
Conclusion

The given approach of in this paper differs significantly from other similar research studies which were
conducted in the class of fuzzy linear programming problems. Here we introduced the PLR fuzzy numbers
which are applicable to many branches of knowledge. In addition, in contrast to arithmetic operations on LR
fuzzy numbers which are usually very complicated and voluminous, we have developed PLR fuzzy numbers
with simpler multiplication operations and fewer computational procedures. Therefor in this method we are
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able to reduce the lengthy numerical algorithms required in an arithmetic operations on fuzzy numbers when
the number of multiplication operations are more than the number of additional operations. Furthermore, by
applying our percentage form of fuzzy numbers in fuzzy linear programming problem, we are able to predict
maximum variation range of optimal value of objective function when the maximum variation range of variables
are predetermined.
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C.M. JlaByim, H.A. A6y Paxman

AHnbIKEMecC CBIBBIKTHIK OarJgapJjiamMaJiay ecebiHeri
OHTalJIBI MIeNTiM/ i boKay

MakaJjtazia aHbIKeMeC CaHIap/IblH, Maia/Ibl TYPl MEH OHbIH, apU(dMETHUKACHI OOJIBIIT TaObLIATHIH, AHBIKEMEC
cangapabie LR maibi3nplK TYpiH aHBIKTayFa THIPBICKAH. ABTOPJIAp aHBIKEMEC CaHIAP/IBIH OChI (DOPMACHIH
KOJIZIaHA OTBIPBII, aHBIKEMEC OO BEKTUBTI (DYHKITHSIHBIH OHTANIIBI MOHIHIH, ©3repyiHiH MAaKCHMAJIIbI JUATIA30-
HBIH KaJiail 60JKayra O0JIaTBIHIBIFBIH KOPCETKEH. AHBIKEMEC MOcesIesep 9eTTe Kyp/aei Type MeniaeTiH-
JiKTeH, GyJI 3epTTEyAiH MaKcaThl — MeHeKep MaceJesIep/ll [IelecTeH OHTaiibl mentiM GosrkaMbiHa (Z7)
KOJI 2KeTKi3e ajaThiHail eTin TYmKigikTi mremriM ymra 6o/KaMm TypiH mbrapy 60sbin Tabblaansl. Co-
HBIH/IA, AaHBIKEMEC CBI3BIKTHIK, OargapsiamMaJay Ke3iHje aHbIKeMec O0beKTHUBTI (pYHKIMAHBIH OHTANIBI MOHI
aHBIKEMEC alfHBIMAJIBIHBIH ©3TePYiHiH, MAKCUMAJIIBI UANA30HbI AJIbIH-aJ1a aHBIKTAJIFaH Ke3/e O0IzKaHa b

Kiam ceadep: aHbIKEMEC CAHIAPABIH, MANbI3ALIK TYPI, TAK CaH, aHBIKEMEC ChI3SBIKTHIK, OaF apiaMaJiay, aHbIK-
eMec apudMeTnKa.

C.M. laByym, H.A. A6y Paxman

HpOFHOBI/IpOBaHI/Ie OIITUMAJIBHOI'O pellleHnd B 3aJa4de
HEYEeTKOI'0 JIMHEIMHOIO ImporpaMmmMmnpoBaHUA

B crarbe npeanpuHsiTa IONBITKA ONPEIETUTh TPoleHTHYI0 ¢popmy LR HedeTkux umcest, Koropasi siBJIsI€TCsT
moJie3H0M (HOPMON HEUEeTKUX YucCes U ee apudMeTHKoi. ABTODBI IMOKa3bIBAIOT, KAK MOXKHO IPEJICKA3aTh
MaKCHUMaJIbHBIA TUANa30H U3MEHEHNsI ONTUMAJILHOIO 3HAYEHUSI HEYETKOH Ie1eBOi (MDYHKIUU C IIOMOIIBIO
91Ol POpPMBI HEUETKUX 4Yncesl. [I0CKObKY HedeTKue MpoOJIeMbl, KaK MIPABUJIO, PEIIAIOTCS CJIOXKHBIM 00pa-
30M, [EJIb 3TOrO HUCCJIECIOBAHUA — BBILYCTATH CBOErO POAA MPOTrHO3 JJjId OKOHYATEJIbHOI'O PEIICHUS TAKAM
06pa3oM, 9TOObI MEHE/KEP MOr IOJIYYUTh JOCTYH K MPOrHO3Y ONTHMAJLHOrO pemteHus (Z*), He peras
npobyiembl. HakoHerr, onTuMalibHOE 3HAUYEHNE HEUETKON I1eJIeBOM (DYHKIIUU [TPU HEYETKOM JIMHEHHOM IIpo-
rpaMMUPOBAHUU IPEICKA3bIBACTCA, KOrJa IPeJonpele/lcH MAKCUMAJIbHBIA TUAIla30H U3MEHEHUST HEIETKON
IepEeMeHHOI.

Karouesvie caosa: porieHTHasT popMa HEUETKUX UHCes, HeYeTKOe YUCJI0, HEYETKOe JIMHETHOe IIPOrPaMMIU-
poBaHUe, HeUeTKasT aprudPMeTHKA.
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To the solution of the Solonnikov-Fasano problem with boundary
moving on arbitrary law z = 7(¢).

In this paper we study the solvability of the boundary value problem for the heat equation in a domain
that degenerates into a point at the initial moment of time. In this case, the boundary changing with time
moves according to an arbitrary law z = «(t). Using the generalized heat potentials, the problem under
study is reduced to a pseudo-Volterra integral equation such that the norm of the integral operator is equal
to one and it is shown that the corresponding homogeneous integral equation has a nonzero solution.

Key words: heat equation, moving boundary, degenerating domain, pseudo-Volterra integral equation.
Introduction

In many practically important engineering problems, the process of forming a temperature field in the
structure under study is accompanied by the removal of a part of the substance from the surface, which leads
to a change in its boundaries over time. The need to take into account the of the boundaries mobility of the
studied domain significantly complicates the solution of the corresponding problems [1-5].

For example, in mathematical modeling of thermophysical processes in an electric arc of high-current di-
sconnecting devices, the heat equation is used, which takes into account the effect of heat sources in the arc and
the effect of contracting the axial section of the arc in the cathode region into the contact spot [6]. Moreover,
the diameter of the contact spot is much less than the section diameter of the developed column of the arc,
which makes it possible to consider it as a mathematical point. At the initial moment of time, the contacts are
in a closed state and solution domain of the problem is absent; then, the solution domain changes over time
according to the conditions for opening the contacts.

From a mathematical point of view, the singularity of the problem under consideration lies, firstly, in
the presence of a moving boundary, and secondly, in the degeneration of the solution domain at the initial
moment [7, 8]. Problems in domains with moving boundaries are also relevant in modeling physical processes
in a gas discharge plasma, during melting of electrical contacts, the effect of an electric arc on contacts, in
studying the problems of thermal shock in domains with a moving boundary, in solving a number of problems
in hydromechanics [9-13].

Applying the method of generalized heat potentials, a number of similar problems can be reduced to the
solution of sinqular Volterra type integral equations of the second kind. It is essential here that if in the
boundary value problem the variable domain does not degenerate into a point at the initial moment of time,
then the integral equation equivalent to it is solved by the method of successive approximations. If the domain
degenerates into a point at the initial moment of time, then the integral equation of the boundary value problem
has a singularity, which is that the integral from the kernel tends to unity as the upper limit of integration tends
to the lower one, and this means that the method of successive approximations is not applicable to it.

Statement of the problem

Let’s study the solvability issues of the following boundary value problem:

ou  5,0%u

o5~ Coz=f@t), {0<z<a®), t>0} (1)

*Corresponding author.
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Ou B du(t) = Ou B
% o - ’U,o(t), dt + oz (8] - ul(t)v (2)

where (t) = u(y(t), 1), 7(0) = 0 for 7(t) = [t(1 + ag(®)], w > L.
Function (t) : (0,00) — (0, 00) satisfies the following conditions:
1. asymptotics of the function v(¢) as t — 0 and as t — oo has the form ¢*, where w > %;

2. starting from some moment of time ¢} until moment of time t5 the function «(t) is arbitrary, strictly
monotone and one-to-one, i.e. there is a reverse transformation ~~1(¢).

We introduce the classes of solutions and data of the problem as follows:
(@ + O] ) u(@, 1) € Loo(G), ie. u(z,t) € Loo(Gs (z + [y 1)1,

2w—1

fa,t) € WA (G0 exp { (0] 5 /(402 } )
uo(t) € Loo (Rys [y(1)]"C/27D) 1 un(t) € Loo (Ras [y(0)]*/271) .

This kind of boundary value problem (1) arises, for example, in studies of the Stefan problem [14].

Transformation of problem (1) and reduction of it to the integral equation

Introducing a new unknown function v(z,t) = 2%, we transform problem (1)—(2) to the next problem:
v 0%
a—a—:f(x,t), {0<z<t, t>0} (3)

= (), (4)

z="(t)

v(x, 1),y = vo(t), (gz + 1"'@2”(0@)

where f(x,t) = aféi’t), vo(t) = ug(t), wi(t) = ul(t) + f(w t)

=y(t)
Remark 1. Each solution to boundary value problem (3)—(4) defines a unique solution (up to a constant) of
boundary value problem (1)—(2).

We will find the solution of problem (3)—(4) as the sum of heat potentials [15]:

(“ zaf/ A T e"p{ 42€(_§)2)}f (& mdedrs

4a3f / (t— T 3/2 { 4a2(a; -7) v(r)dr+ (5)

2af/ e p{‘M}w(r)dr

The function defined by equality (5) satisfies the equation (3) for any functions v(t) and ¢(t), which are
still unknown and are to be determined further.

Satisfying solution (5) with boundary conditions (4), we obtain the following integral equation:

+/O K, (t,7)p(T)dr = F(t), (6)

kernel K, (¢, 7) of which can be represented as a sum:
4 .
S
i=1
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where:
y_ 1 @) +(7) (v(t) +v(n))?
ST exp{_ 1t =) }
2 L () —~(7) (y(t) = 7(n)*
Kg)_ 2a+/T (t 7_)% exp{— 4a? (t —T) }’
TS J N S ) {(74(t)2+7(7))2}’
T (4 7)3 a?(t—1)
ke L 1@ () —y()
a W(t—T)% 4a? (t — 7

The free term of equation (6) has the following form:

K A IR ol CO N DN (R ()
7l = s |

Lev®) [f A (1) e
— /o< o g g f e 26 )

2af / / [t— 3/2 Xp{ ifz()f%} (Z(_t)T;:sfz exp{—m}] f(& T)dedr—

= 149/ () - &%) 5
. —— dédr.
e A e e R
We will find the solution of integral equation (6) in the class of functions:

) (1) € Loo(0,00), e, (t) € Lo (0,005 ()] &),

For convenience, we represent equation (6) as follows:

Ft) = -

RO B
a0+ [ [7()} K (£, 7)r (r)dr = F(t), ()

where X .
pi(t) =t p(t),  Fi(t) =t F(1).
Remark 2. ([16], p.183) If the (particular) solution of the integral equation

+ [T K @0y =
+ /wR(:v,t) F(b)dt

then the (particular) solution of the integral equation (with a modified kernel)

+ /x K (z,t) ?q((gtc))y(t)dt = f(x)

is given by formula

is given by the formula
x
g(z)
va) = 5@)+ [ Rt L fo
a g(t)
The same is true for the solutions of the corresponding homogeneous equations.
Such kind of the Volterra integral equations were considered in the papers [17, 18].

Note that a feature of integral equation (7) is the following property of the kernel K., (t,7):
t
lim K, (t,7)dr = 1.
t—0+

In order to solve integral equation (7), cons1der the corresponding characteristic integral equation.

Mathematics series. Ne 1(101)/2021 39



M.T. Jenaliyev, M.I. Ramazanov, A.O. Tanin

Characteristic integral equation. Estimates for kernels of integral operators

For integral equation (7) we will construct a characteristic equation

Taw]= B
o(t) + /0 [7(7_):| Ky (t,m)e(m)dr = ¢g(t), ®)
where
Kn(t,7) = 3 K, (t7),
iy = L @0 (O O + o) {he)
QGﬁ (h/( Zw=1 [’Y(T)] zww,l) 3

KOy = 2. (2w —=1)% - [y(O)] = ‘{[’Y(T)F} (2w — 1) (['y(t)] B
b ay/m (120-1 _ r2w—1)3

Next, we show that it is indeed characteristic equation for the equation (7). Firstly, we note that the kernel
K}, (t,7) has the property:

¢
i (1) -
tlgr(l) ; K (t,m)dr = 1.

Equation (8), using the following the change of variables:

90 = (5 0) = a0 = (n) T
® {(24011 't1>m] =p1(t1), g [(zwll 'tl)m] =g1(t1),

reduces to the following integral equation [8]:

1 (tl)‘i‘/ol\/ZKl (t1,71) 1 (1) dmi = g1 (1) - 9)

The kernel K (t1,71) has the form:
4 .
Kl(tl,Tl) = ZK%l)(tl,Tl),
i=1
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where i
) = g p{w}
B - 2
2
Kt m) = _a\2/%. (t: —171)5 .exp{_@(?(;t%};

K= e |

1—T1

Solution of integral equation (9) has the form [8]:

@ (t1) =g(t1) +/0 \/E‘R(tlﬂ—l) g (t1) dr 4+ C - Phom (t1) , (10)

which also belongs to the class Lo (Ry; Vi1 exp {£z}).
Moreover, the following Lemma holds for the resolvent [§].
Lemma 1. The resolvent R(t1,71) admits an estimate

T1 t1711

<" [
Rltn ) < 0" o { - o

}, 0<m <t <4o0.

Solution of characteristic integral equation (8)

Returning to the old variables, in equality (10), we obtain the solution of characteristic equation (8):

ey =g+ | t (%) T 67064+ O rem (2o-ves-nHE ).

T

and the resolvent Ry, (t,T) satisfies the estimate

bw—3 1
()] @ [y B N
Bultr) < €1 ) G exp] 0 DBOL Mgg_l) oy

o (w)] el

Theorem 1. For any right side g () € Lo (R; [y (t)]2wl> integral equation (8) has a general solution

o€ Lo (R B O)E)

¥ (t) =g (t) +/0 <:3//((7t_))> 2w Rh (t,’]‘)g(t) dr + C - ©hom ((2(,;) _ 1) t2w71) ,

where @pom (t) is the solution of the homogeneous equation, and for the resolvent Ry (¢, 7) we have estimate (11).
Solution of integral equation (7). (Regularization method for solving the characteristic equation)

Using Remark 2, we consider equation (6), which we represent as:

o)+ / K, (t,7) o (7) dr = / (K (t7) — Ko (7)) 0 (7) dr + F (). (12)
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Assuming the right-hand side of equation (12) is temporarily known, we write its solution as:

t T

t
= / b = i ol drt /Rh (&) /[Kh (r,11) = Ky (r,m0)] @ (1) dry o drt
0 0 ,
t
o /R" (t,7) - F(7)dr + Co - Prom (2w —1) - #271).
0
In the iterated integral, we change the order of integration and change the roles of the variables 7 and 7,
then we obtain

() + / R (t,7) -0 (7) dr = Co - gpom (20— 1) - £2°°1) + B (1) (13)

The kernel K (t,7) has the form:
K(t,r) =K (t,7) + K (t,7)
where
t

f((t,r) =K, (t,7) - K, (¢, 1), K (t,7) = / R(t,m) Ky (m1,7) — Ky (71, 7)) d7y.

1

Let’s introduce the following notations:

K 61 =PV en {0 b K () = PP e {-Q0}, i=1,2.3.4,

where
" T R VR (7C3) R o700) R o100) e RASTCO I
Ph, (taT): 2&\/7?. - RN )
(b1 =)
0y = 207D (O + b= ol
h \BHT) = 201 2w—1
102 (h®]% )
D7) = () +(7) 1) _ (v(t) +7(1))*
AT v B R T

Now we prove the following theorem.
Theorem 2. If function v(t) = [t(1+ ap(t))]*, where ag(t) = tPo(t), B > 0, and function o(t) is twice
continuously differentiable for 0 < ¢ < oo, and |o(t)| < C, o(t) # 0, then we have an estimate:

w—1
1K 07) = Bt 7)] £ C() e % [exp (=Q4 (1,7)/2) + exp (—Qn(t,7)/2)] (14)
and the limit relation: .
tl—i>r-|r—lo [Ky(t,7) — Kp(t,7)]dT =0 (15)
0

holds.
Note that estimate (14) is obvious for the terms

‘K,(j) (t,7) — KO (¢, 7)| for i = 2,3, 4.

Now we prove the estimate (14) for i = 1.
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Lemma 2. If ap(t) is monotonically increasing function, then the inequalities:

2w—1 2w—1

[t(1 + ao(1))] — [7(1 4 ag(7))]
[t(1 + ao(0))]* 7% (1 + ao(t1) + traf(t))(t — 7)

[+ ao(t)]* ™" = [r(1 + ao(r))]*
[+ ao(®))]*7 (1 + ao(t) + tiag(h)) (8~ 7)

hold, where t; =7+ 6,(t —7), 0<6; <1.
Proof of the Lemma 2. It’s obvious that [20; 456]:

2w—1<

1
<1 for §<w<1,

<2w-—1 for w>1,

1— 2w—1 1
Wwo1<— T <1 if t<w<l, 0<z<1;
11—z 2
17582(4)71
1§17§2w—1, if w>1, 0<z<1.
—x

Let w > 1, then for 0 < 7 <t we get
1+ ()] 72 (t — 7 + tao(t) — Tao() < [t + ao(t)]? ™ = [7(1 + ao (7)) <

< (2w — 1) [t(1 + a7 (t — 7 + tao(t) — Tao(7)).

Using Lagrange’s interpolation formula, we have

tag(t) — Tao(T) = (o (t1) + trag(tr))(t — 1),

where t; =7+ 601(t —7), 0< 61 < 1.

The proof is analogously for the case % <w< L

The following lemmas are proved in a similar way.

Lemma 3. If the function v(t) = [t(1 + ap(t))]”, where ag(t) = tPa(t), 8 > 0 and the function ag(t) increases
monotonically for 0 < ¢t < oo, and |o(t)| < C, then estimate:

twtB

(t—7)

PV (t,7) — PO (t,7)| < Oy (w)

oo

holds.
Lemma 4. Under the conditions of Lemma 3, estimate:

t2w+B

‘Qill(t7 T) - Qi(t,’]’)’ < Ml + M2t2w—1

t—T
holds.
Proof of the Theorem 2. First, we establish the following inequality:

[t(1 + ao(t))]” ¢

oyt = M T

For those values of parameter w, 0 < 7 < t < oo, for which |Q}(t,7) — Q1 (£,7)| > 0, the required estimate
follows from the following inequalities:

Pg(t,T) =

}Kilz(th) - K}y(t77—)| < |(Pi1(tv7—) - P—:(tﬂ—)) eXp{_Q’Y(th)}’ +

+ |P,¢(t, T) €xXp {_Q}ll(t77—)} (1 — exp {_Q'ly(th) + Q:}ll(t77—)})| <
< |P,1 (t,7) — PA}(t, 7')‘ exp {—Q#(t,T)} + {P; (t,7) (Qi(t,T) — Qi (t, T)) exp {—Q}L(t,T)H )

Hence, taking into account the Lemmas 2 — 4, we get:

_ qwtsB v 2w+p
K, — K| <M + + M, = | My + Mot 1) Le@n <
(t—7)2 (t—7)2 t—T1
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twfl _ tﬂ+1 B t2w+5+1 B t2w
<- - (M — + M, + My e <
(t—1)2 t—r (t—7)2 t—T

t—7 \t—T (t—7)2
%—w
_ _ _ e w—1 —q,
+ ! e T CMot* ) e e < C(w) at) t =5
t—r1 a(T) t—T1

If the values of the parameter w and 0 < 7 < ¢ < oo are such that the difference Q (¢, 7) — Qx(¢,7) < 0, then
it is enough in the same inequalities to interchange the functions Q~(¢,7) and Qn(t,7), Py(t,7) and Py(t,7)
accordingly.

The validity of inequality (14) shows that the difference K (t,7) — K} (t, 7) has a weak singularity and the
limit relation (15) holds.

t tw—l
I -
t+0 /0 Wi

Consequently, equation (8) is indeed characteristic equation for equation (7). Theorem 2 is proved.

exp (—Qn(t,7)/2) +exp (—Q(t,7)/2)] dr = 0.

In order to obtain estimates for K (¢,7), and at the same time for K (t,7) estimate for the resolvent, we
represent in the form:

e (O R AUl ey | R Aa eyt (SN ey | (16)

2w — 1 t—n

Here C;(w), M;(w), j = 1,2 are constants depending only on w.

Using estimates (14) and (16), we obtain the following theorem:

Theorem 3. If function ~(t) = [t(1 + ag(t))]”, where ag(t) = tPa(t), B > 0, and the function o(t) is twice
continuously differentiable for 0 < ¢ < oo, and |o(t)| < C, o(t) # 0, then the kernel K(¢,7) has a weak
singularity, i.e. we have an estimate:

t1/2+6

‘I:((t,T)‘ <

1
2 1
7—3/2*Lu+€(t_7_)1/270<5<w 270<7‘<t<oo, (17)

which means that integral equation (7) for any f(¢), [y(t)] "o f (t) € Ls (R4+) has a unique nonzero
solution:

@ (1) € Lo (Roos YOI/ 7).

Proof. Since K (t,7) = K (t,7) + K (t, ), then estimate (17) follows from (14), estimates for resolvent (16)
and below relations. Using the following double inequality [19; 55]:

CitP™ Yt —7) <tP — 7P < Cor? Yt — 7),tme C; = min {1, p}, Cy = max {1, p},

first we get (p = 2w — 1):

N t 1—7/2 3w3/2 t 2w—1
K < M. —y—1 Q n n . n — 7 .
(t,7) < 2(w)/T 7 (T) = =) exp | —Cq(w) p— dn = I(t, 7)

We represent the function I as a sum of two terms:

w—1 t3/2

Ig(t,’r) = Igl(t, T) —+ Igz(t,’r),
for each of which we will have:

= [C) + Caw) (/07 [ - (/7)) = = [C1(w) + Catw) (1/7)).

<

7
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For the second term

V=Tt =) t—n
=
C L 1 2 1
@ #(t w=
< t(w) T exp (Cs(w) ( J;T) )dnﬁ
—THTT (t—m)2 U

t—n
téT
C(w) / 2 Cs( Cs(w)
(w “ 5(w 9 w
S Vies 7_/ % (C’4(w)t n)dn — /exp{ z}dz P
0 2w—1
t 2

In these inequalities, the constants C(w), Cj(w), j = 1,2,3,4,5 are different and depend only on w. The
obtained inequalities imply the required estimate (17). This completes the proof of the Theorem.
Remark 3. From relation (13) it follows that homogeneous equation

/K (t,")pu(r)dT =0,t € Ry,

is equivalent to the nonhomogeneous equation:

‘P(t) +/0 [:( (t,T) . 4)0(7') dr = Cy * Phom (<2w _ 1) . t2w—1) .

Study of the boundary value problem

A solution of the original boundary value problem (1)—(2) have the form:

x

u(z,t) = [ v, t)de, (18)

0

where v(z,t) = Vhom (%, t) + Upare(z, t), and

Vpart (T,1) = 2af/ p—"YE [—exp{—W}—kexp{—mH “ Ppart (T) dT+

2af// t—7 1/2[ eXp{ 4(€(+§) )}+exp{ 4(2(5)7)”~f(5,7)d5dr+

3/2—w

/2—w ~
where the functions (v(t))” = - ¢(t) and (y(t)) S - f(z,t) are bounded and continuous functions on R and
@, respectively.

From (18)—(20) we obtain the following estimates:

uhom(x7t> < aﬁ{—Q erf ( r T ) +
2av2 = 1 (0] 7
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+2exp { (2 - lig;(t)] - }erfc < 2 - 1%([;“)] = ) —

e { 20 + (2w = 1) [y()] } e (x T (20— DO )
4a? 2ay/2w —1- [y(t

o {_290 - (20— D ) }f (_z el
o 207/ 1 (1)

—~ ~— |
)
€

~
= | =
¢
¥ N
el ¢l
= |
-
\/
——

For upert(x,t), we have that

upart(xat) < (L\/’/’F {—261‘f ( i T ) +
20v%— T (O] 5

e { 2 01 100) N } i <W —1-p()] = ) )

4a? 2a
- { 20+ (2w = 1) ()5 }f (x + (20— 1) (O] ) _
4a? 2av2w —1-[y(t)] =

e {2x . V1 o1(0) Nl }f ( (2w -1) h(t)]j“{) } R <mmt>f‘5wl ) .
da? 20V = 1[y(8)] = vE 20

Therefore estimates of these integrals give the statement of the Theorem.

Theorem 5. For any right side f(t) € Loo (R+; ['y(t)]S/ZT_w exp {7(t)/(4a2)}) and for given functi-

2w—1

ons f(a,t) € WL (Gi(®F exp {105 /() } ), wolt) € Loo(Ras [y = )i wa(t) € Loo(Ros

[’y(t)]g/iiw) boundary value problem (1)-(2) has a general solution u(z,t) € Loo(G; (z + [y(1)]3/2~1)71),
which is determined from formula (18)—(20).

Acknowledgments

Supported by the grant projects AP08956033 (2020 — 2021) and AP08855372 (2020 — 2022) from the Ministry
of Science and Education of the Republic of Kazakhstan.

References

1 Kapramos 9.M. Anajurudeckue METOIbI B TEOPUU TEILIONPOBOAHOCTH TBepAbiX Tex / .M. Kapramos.

— M.: Bpicmr. mk., 1985. — 553 c.

2 Kapramos 9.M. AHamnTn9ecKre METO/IbI PEIIEHNST KPAEBbIX 33/1a1 YPaBHEHNUsI TEIIONPOBOTHOCTH B 06J1a-
cru ¢ gapmkymmmuca rpagunamu / .M. Kapramos, B.4. JTio6os // Uszs. AH CCCP. Duepreruka u
rpanrcrmopt. — 1974. — Ne 6. — C. 83-111.

3 Kapramos 9.M. Anagurndeckne MeTOIbI PEIIEHUs] KPAEBBIX 33J1a9 HECTAIIMOHAPHON TerIONpPOBOIHOCTH
B obsacTax ¢ aerkynmmMucs rpadunamu / .M. Kapramos // 3. PAH. Duepreruka. — 1999. — Ne 5.
— C. 3-34.

4 Kapramos .M. Anajgurudeckne MeTO/IbI PEIeHUs] KPAEBBIX 3aJ/1a9 HECTAIIMOHAPHON TerIONPOBOIHOCTH
B 0b6j1acTax ¢ gsmkymumuca rpapuiamu / 9.M. Kapramos // Umx.-dus. xypa. — 2001, — 74, — Ne 2.
— C. 171-195. DOI: 10.1023/A:1016641613982

5 ArrerkoB A.B. TemneparypHoe 1oJjie MOJIyIIPOCTPAHCTBA ¢ TEPMUYECKNA TOHKUM IOKPBITHEM B UMITYJIb-
CHBIX peKMMax TeraoobMeHa ¢ okpyzkaromeil cpepoit / A.B. Arrerkos, P.A. Buacos, I.K. Boskos //
Nux.-bus. xkypa. — 2001. — 74. — Ne 3. — C. 647-655. DOI: 10.1023/A:1016756227188

6 Kharin S.N. Mathematical models of phenomena in electrical contacts: Monograph / S.N. Kharin //
A.P. Ershov Institute of Informatics system, Siberian Branch of RAS. — 2017. — 193.

46 Bulletin of the Karaganda University



To the solution of the Solonnikov-Fasano problem...

10

11

12

13

14

15

16

17

18

19

Amangaliyeva M.M. On one homogeneous problem for the heat equation in an infinite angular domain /
M.M. Amangaliyeva, M.T. Jenaliyev, M.T. Kosmakova, M.I. Ramazanov // Sib. Math. Jour. — 2015. —
56. — Ne 6. — P. 82-995.

Jenaliev M.T. On a homogeneous parabolic problem in an infinite angular domain / M.T. Jenaliev,
S.A. Iskakov, M.I. Ramazanov // Eurasian journal of mathematical and computer applications. — 2019.
— 7. — Ne 1. — P. 38-52.

Mumkun A.T. MaremaTuyeckoe MoIe/upoBanne (PU3MIECKUX IIPOIECCOB B TEPMOSIIEPHOI 1 Ia30pa3psi-
Hoit wiazme / AT Ilumkua. — M.: Apramak-meua, 2015. — 235 c.

Hamurokos K. K. Maremaruueckoe MozesmpoBaHue Iporeccos B razopaspsaanoii miasme / K. K. Hamuro-
koB, II.JI. [Taxomos, C.H. Xapun. — Asma-Ara: Hayka, 1988. — 208 c.

Kapramos 9.M. IIpobiema TemioBoro yiaapa B 00JIaCTU € JABUXKYIIEHCsS TpaHUIEl Ha OCHOBE HOBBIX HH-
rerpaybHbIx cooTHorrennit / 9.M. Kapramos // Wss. PAH. Quepreruka. — 1997. — 4. — C. 122-137.
Bepurun H.H. O6 oqHOoM Kj1acce TruApOMEXaHUIeCKUX 3349 I 00JIacTell ¢ NOJBUKHBIMA IPAHULIIAMEA /
H.H. Bepurun // Jlunamuka >KUAKOCTU €O CBOGOAHBIMEU rpanumaMu. — 1980. — 46. — C. 23-32.
Barmacapos X.C. Terro- 1 MaccorepeHoc Ipu BBIPAIUBAHUNA MOHOKPUCTAJIJIOB HAITPABIEHHONW KPHUCTAJI-
muzanueit / X.C. Bargacapos, JI.A. Topsunos. — M.: @usmaraur, 2007. — 234 c.

CononnnkoB B.A. Ognomepnast mapabosmaeckasl 3a/1ada, BO3HUKAIONAA [IPU UCCJIEOBAHIE HEKOTOPBIX
zaza4 co cBobomubiMu rpanunamu / B.A. Cononnukos, A. ®azano // 3am. may4a. cemun. [IIOMU. — 2000.
— 269. — C. 322-338.

Tuxonos A.H. Ypasuenus maremarundeckoil dusuku: yueb. noc. mig yu-toB / A.H. Tuxonos, A.A. Ca-
Mapckuit. — 4-e uzz., ucnp. — M.: Hayka, 1972. — 735 c.

Hongnun A.Jl. Cupasouynuk 1o unrerpaibubiv ypasaerusm / A.JL. Tonanun, A.B. Mamxkupos. — M.:
OuzmatuT, 2003. — 608 c.

Jenaliyev M.T. On a Volterra equation of the second kind with ’incompressible’ kernel / M.T. Jenaliyev,
M.M. Amangaliyeva, M.T. Kosmakova and M.I. Ramazanov // Advances in Difference Equations. —
2015. — 71. — P. 14.

Amangaliyeva M.M. About Dirichlet boundary value problem for the heat equation in the infinite angular
domain / M.M. Amangaliyeva, M.T. Jenaliyev, M.T. Kosmakova and M.I. Ramazanov // Boundary Value
Problem-. — 2014. — 213. — P. 21.

Hardy G.G. Inequalities / G.G. Hardy, J.E. Littlewood, G.M. Polya. — Foreign literature, 1948. — 456 p.

M. T. Ixxenammes, M.M. Pamazanos, A.O. Tanun

ITekapacot x = (t) 3aHABLIBIFBIMEH KO3FAJIATHIH
CosmoraukoB-Pa3aH ecebiHiH MIenTiMi TypaJibl

2Kympbicra 6acTankpl Me3€TTe KOUBIIATEIH O0JIBICTAFbl 2KBIIYOTKI3TIMTIK TeHAEy YIIIH IeKapaJsIblK, €CeNTiH
merrimi 3eprrenred. MyHza, mekapachl yakplTKa Gaitmanbictel © = () 3aBapLIbIFBIMEH o3repeni. Ka-
PaCTBIPBLIBIIT OTBIPFAH €CEIl YKAJIIbLIAHFAH 2KbIIY ITOTEHIINAJIAPbIHBIH, KOMETIMEH IICEBI0-BOIBTEPPAIBIK
MHTErPAJIJILIK TeHJeyTe KeATipiieai. Al MHTerpaJsIblK, OIepATOP/IbIH, HOPMACBIHBIH, Oipre TeH GOJIybl OHBIH,
epexinesiri 60sbin Tabbtaabl. COHBIMEH KaTap, Cofikec GIPTEKTI MHTErpAJIIbIK, TeHJIEY IiH HOJIIIK eMeC IIe-
IiMiHiH 00JIATBIHBI KOPCETIINEH.

Kiam cosdep: XKBUTyOTKI3TIIITIK TEHIEY, *KBLIXKBIMAJIBI IIIEKAPAa, JKOMBLIATHIH 00JIBIC, TICEBI0-BOJIBTEPPAJIBIK,
WHTErPAJIIBIK, TEHIEY.
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K pentennio 3agaunm CossonHukoBa-Pa3aHo 1Ipu ABUXKEHUN
IPAHUIBI IO IIPOU3BOJIBHOMY 3aKOHY & = (1)

B pa6ore uccieqoBaHbl BOPOCH! pa3permMOCTH TPAHUYHON 3aa4Un JIJIs YPABHEHUST TEIJIONPOBOTHOCTH B
obJtacTr, KOTOpasi BBIPOXKIAETCSI B TOYKY B HAYAJIbHBI MOMEHT BpeMeHH. [Ipm 3TOM M3MEHSIONAscs Co
BpEMEHEM IDaHUIla JABUXKETC 10 MPOM3BOJLHOMY 3aKOHY = = (t). C moMomipbio 060BIIEHHBIX TEIIOBBIX
MMOTEHIINAJIOB HCCJeyeMas 3aJada PeIyIUPyeTcs: K IICEBI0-BOJIBTEPPOBOMY HHTEIPAJIBLHOMY YPABHEHUIO,
0COOEHHOCTH KOTOPOT'O 3aKJ/II0YAETCS B TOM, YTO HOPMa MHTEIPAJBHOTO orepaTropa paBHa emauuuie. [loka-
3aHO, YTO COOTBETCTBYIOIIEE OJHOPO/IHOE UHTErPAJIbHOE YDAaBHEHHE UMeeT HEHYJIEBOE DeIleHue.

Karouesvie caosa: YpaBHEHHNE TEIJIOIIPOBOJHOCTH, IIOJIBU>KHas I'PaHUIla, BBIPDO2K/IaI0IadCs O6J'IaCTI>7 IICeBa0-
BOJIBTEPPOBOEC MHTErpaJIbHOEC ypaBHEHUE.
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Approximate Solution of Volterra Integro-Fractional Differential
Equations Using Quadratic Spline Function

In this paper, we suggest two new methods for approximating the solution to the Volterra integro-fractional
differential equation (VIFDESs), based on the normal quadratic spline function and the second method used
the Richardson Extrapolation technique the usage of discrete collocation points. The fractional derivatives
are regarded in the Caputo perception. A new theorem for the Richardson Extrapolation points for using the
finite difference approximation of Caputo derivative is introduced with their proof. New techniques using
the first derivative at the initial point such that obtained by follow two cases the first using trapezoidal rule
and the second using the first step of linear spline function using the Richardson Extrapolation method.
Specifically, the program is given in examples analysis in Matlab (R2018b). Numerical examples are available
to illuminate the productivity and trustworthiness of the methods, as well as, follow the Clenshaw Curtis
rule for calculating the required integrals for those equations.

Keywords: Integro-fractional differential equation, Caputo derivative, Quadratic spline, Extrapolation me-
thod, Clenshaw.

1 Introduction

In this research we will improve a proximity based on the quadratic spline to attain the numerical solution
of the following Volterra integro- fractional differential equation (VIFDE’s) of the second kind of the form:

CDEult) + Y PUOEDE () + Pautt) = £0)+ Do [ Kelts) CDEuteas, e fat ()
i=1 =0 a

Subject to
[u(t)](t:a) = Uq, (2)
where o, > a1 > - > a3 >ap=0and B, > Bm_1 > >01>0=0

0<Oéi, BJS].

Connected with N—condition; N = max{n;,m; for all ¢ and j}, where o;,3; € Rt,n; — 1 < a; < n; and

m; —1 < B; <my, n;y =[a;] and mj = [p;] foralli=1,2,...,nand j = 1,2,...,m, u(t) is the unknown
function and £ : S x R — R (with S = {(t,s) : a < s < ¢t < b}) denote a given functions, f(t), P;(t);
(1=0,1,2,...,n) are given continuous real valued function on I, and ); is a scalar parameter.

In Eqn.(1), aCD? and ng denotes fractional differential operator where n —1 < «, § < n € N in the sense
of Caputo and is given by

1 ¢ u™(s)

—1
T(n—a) Ja (t—s)aﬂfnds n <a<neN

oDy u(t) =

(t) a=neN

*Corresponding author.
E-mail: karwan.jwamer@univsul. edu.iq
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Properties of the operator ¢ D} can be found in [1-5], we mention the following

§ 0 ifpe{0,1,2,...,n—1}
i. °DY(t —a)P = r 1
LaDi(t-a) F(pEQZ—F)l)(t_a)p_a ifpeNandp>n orp¢Nandp>n—1

ii. Letn—1<a <n,n € Nand o, A € R and functions u(t) = A is constant function such that ¢ D u(t) = 0

iii. f0<a<1,t.€Randm e R" and for any arbitrary ¢, > a = to. Then, for all a <t < b [6].

Cp2(t—tym = |3 LD T Dt ) (tr - )]

ps I'(m+1—1i—a) t—a

where [a] denote the smallest integer greater than or equal to a. In the present research.

Several methods have been introduced in the literature for the numerical approaches to IFDE’s have been
recently studied by numerous authors [7-11].

This work is organized as follows: we start by an introduction then focus the fractional differential operator
Caputo sense. Preliminaries and discussing numerical methods, quadratic spline function is defined ,devoted to
applying the integro-fractional differential, and explains some of the theorems that are needed for this work
described in section two. Section three the proposed method is applied to two examples. Also a conclusion is
given in section five.

2 Preliminaries

In this section, we will introduce and study the concepts such that we divided into two subsections.

Definition 1. Clenshaw and Curtis (1960) defined a procedure for evaluating a definite integral by expanding
the integrand in the finite Chebyshev series and adding the terms in the series one by one the technique is very
effective especially for integral equations [12] as follows.

" ’

! N9 N rkm km
/Af(x)dx: Z N}; cos <N>f<cos (N)) k=0,1,...,N.

P even
Remark 1.
i. The notation Z” means the first and last terms are to be halved before summing.
b b—
% + Tay , converting interval [a, b] into [—1,1].

Definition 2. [13] Richardson’s extrapolation is used to create high-accuracy result using low-order formulas.

ii. The transformation x =

m o T.(mfl) _ T.(mfl)
Ti( ) = Ti(+1 2 + 1 y !
(3
-1
<hi+m>
i=1,2,....,mand m = 1,2,...,k — 1. Where L(m) is an approximate value. Richardson extrapolation using
step sizes of h;, hit1, «..y higm, and 0 <m < k — 1.

Remark 2. The sequence {h;} usually is of the form

ho ho ho ho ho ho ho ho ho ho ho ho ho ho
hOa a0 40 o a0 (> h07 o o 4 gEoocce and hOa 5 2 4 a0 g o0
2° 47 8 16 2 37 4 5 2 3747 6 8 12

ho ho ho h
In this paper we will consider the sequence {h;} as the form {ho, ?0, ZO7 go, 1—2, e }
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2.1 Quadratic Classic Spline Q(t): [14]
A function Q(t) is a piecewise spline of degree two can be written as:

Qo(t) t € [to, t1]

o) = Ql(t) t € [t1, 1]

Qn-1(t) te€tn_1,tN]
A quadratic spline consisting of IV separate pieces of quadratic functions of the form
Qr(t) = a,t®> + bt +cp, t € [tr,tr4q], ¥r=0,1,...,N — 1.

In addition Q(t) satisfy the following conditions:

1 The domain of @ is an interval [a, b].

2 Q and Q' are continuous on [a, b].

3 There are points ¢, such that a =ty < t; < --- <ty = b and @ is a polynomial of degree two on each
subinterval [t,, t,41].

4 A quadratic spline is a continuously differentiable piecewise quadratic function.

5 A quadratic spline is a linear combination of basic functions 1,¢, 2. The smoothness condition is stronger
than that for the first-degree spline.

6 The interpolating condition Q,.(¢,) = @Q, and Q,(t,4+1) = Qr+1.

We drive the equation for interpolating quadratic spline Q(t), after some manipulation we obtain,

Qt) = (1 ¢ _ht")z) o+ _ht")QQrﬂ G tT')(;’;T'“ ) Q. (3)

Where Q,(t,) = Qr, Qri1 = Qr(trs1), Q.(t,) =m,, Q. = Q.(t,) and t,41 —t, = hfor r =0,1,...,N — 1.

’

We require from the continuously differentiable condition of quadratic spline function i.e. Q;(tﬂ_l) = Qrt1s
differentiating Eqn.(3) with respect to ¢, we get

, 2t —t,) t) (trg1r — 1) — (t—t,)

2 t - ’
Qr<t) = _TQr(tr) + (TQr(trJrl) + n Qr<tr>,
Putting ¢ = t,,1, we obtain Q. (t,11) = —Q.(t,) + 2 (Qr(tr-i-l)h_ Qr(tr)>
Qg =—Q +2 <Q+1hQ> r=1,2,...,N.

2.2 Fractional Derivative of Spline Functions

In this section, we discuss the way of obtaining fractional derivative for all the quadratic spline. So that,
here we apply Caputo properties to accomplish.
Lemma 1. The fractional derivative of quadratic spline of order o with respect to ¢ as:

SDﬁxw=ﬁ}@?;;[}f@@—a)—ﬂz—aXu—a»Qr+;@a—a>—%2—axu—a»QH1
+ [(trg1 +tr —2a)(2 — ) — 2(t — a)]Q;l , where 0 < a < 1.

Proof. Quadratic spline function Q(t) in the interval [¢,,t,.11] give the formula in Eqn.(3)

Q(t) = A, ()Qr + Bo(H)Qpi1 + Br(H)Q.,

mw=1—C;“Y,&w=1—mm=(“jﬁi

where:
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Co(t) = (t_t”)(fb’““_t), Vr=0,1,...,N —1.

t— 1ty
h

(t —tr)(trs1 — )
h

t—t\° 2,
SD?Q<t>=QTED3[1—( h’”) ) +Q, D}

+ QrJrlgD? (

Using the definition of the Caputo fractional derivative in the from (1)-(3), we have

N -l 2(t—a)* ™ 2t—a)® 1 |2(t—a)>™ 2(t—a)@
2 DEQ) = hZ[ TG-a)  Te-a) 9% 2|50~ Te_a 9|0
+ % (tr+1 +tr — 2a) (?(—Qa) O:)“ - 2(115(; a)a;“ Q..

Through calculation, you can get

D) =

(t—a)t=@| -1
h h

hF(3 _ a) 7(2(25 - a) - 2(2 - Ol) (tr - CL))Qr + 1(Q(t — a) — 2(2 — a)(tr — a))Qr+1

H(trg1 + tr — 20)(2 — @) — 2(t — a)]Q.. |, where 0<a<l.

Theorem 1. [6] The finite difference approximation of Caputo derivative for 0 < « < 1 at define points
t=t,41; 7=0,1,...,N—1and h = (b—a)/N, is formed as

a7 D lultr-n) — (e ).

=0

aCD?u(tr+1) =

where b = (j +1)'7* — j'~°.
Theorem 2.(new) The finite difference approximation of Caputo derivative for 0 < a < 1 of the subinterval

[ty try1], define the point t = ¢+ (i+1)hps, Ay = h = (b—a)/N , according the step size of Richardson

P
Extrapolation M* = 0,1,..., M, is formed as
o r—1 )
& D, U=t 441 hape = Fro oy D ulte—g) = ultr—j )]G °
r2-a) &
he < o o )
sy 2t (=g Dhare) —ults £ = a5,

. _ o M*
where b = (j +1)'7* — j'7¢, G =

. 11—« . -«
_ 1+1 o (+1

i=0,1,...,2M —1, h =ty —t,.

Proof. Recall the definition of Caputo fractional derivative for 0 < a < 1 and using first order forward
difference approximation [15], to obtain

1 trt (D) har ou(s)/0s

C [0}

DOu(t)ier i = d
o Deu®limttrvme = F—gy /a (tr + (i Dhage —s)o
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O e ' B 1 /t* Ou(s)/0s /t*+(i+1)hM* Ou(s)/0s
a Dyttt (4 na = Frl—a)| ), =+ G+ 1)y~ — s)ads + . (t + (i + V) hae — s)ads

r

r—1 cat+(+1)h
_ 1 Z/ 5‘u(5)/85 s
I'(l—a) | = Jarem (tr + (i + D)hpr- — 8)

i ptet(EH1)hag Ou(s)/0s
o (5)/ ) ds}

= Jtrthg (tr 4 (i + )hps- — 8)°
. 1 Tz_f u(teyr) — u(ty) /a+(€+1)h ds
~T(-a) =0 h a+th (tr + (i + Dhpp — 5)
i u(tT + (E + 1)hM*) — u(tr + ghM*) /tr+(£+1)hM* ds
+y ‘ _
£=0 har- totChyge (tr + (i + Dy — 8)

By assumption Let & = ¢, + (i + 1)hp+ — s then d€ = —ds, if s = a + ¢h then & = (r — £)h + (i + L)hy~
s=a+({+1)hthen=(r—~L—1)h+(i+1)hpy~,if s=t,+Lhp then £ = (i =€+ Dhp s =t + (L+1)hpy-
then & = (i — £)hr+, we obtain

1 {Tz:l u(tey1) — ulte) /<T_€)h+(i+1)hM* g
(

C «
o Dy u()|e=t, +(i+1)hp- =
k b=trt (it L)hn I'(l—a) o h r—b=1)ht(i+1)hpg &

Z u(ty + (C+ 1)hare) — ulty + Lhas )/“‘“”h”’* d¢
— Ve (—Ohye &

For first sum; let j =r — £ — 1 and the second let j =i — ¢

i {Z o) =l g =) [ e

B F(l - a) =0 h hA4-(i+1)h s &
N i: u(ty + (i — j 4+ Dhar-) — ulty + (i — j)har+) /(iﬂ)hw df}
= hoar- Jhar+ &

After integrating then compute we can obtain,

a h—« r— e
aCDt u(t)|t:t7-+(i+1)hM* = T2 a) Zj:é [u(tr—j) —ultr—j-1) C% '
R i . . o
+m > im0 |ulte + (i — j+ Dhare) —ulty + (i — j)har- )b |,

where C%*’a = (j+ 1)l 4 jl-o

((j+ 1)+ %L}))la - <j+ (i2;t4*1)hM*>1a1’ b =

8 Methods Analysis

To find numerical solution of Eqn.(1), using quadratic spline function, we can use the following two cases. The
first one using the normal and the second using extrapolation method. Now we can drive each cases.

3.1 Normal Quadratic spline function (VFID’s)

To progress the quadratic spline approximation method for solving Volterra integro-fractional differential equati-
on from Eqns.(1) and (2) on the interval [a,b]. First divided the interval [a, b] be into N-equal subintervals of

length of h = 29 ith endpoints, the quadratic spline Q(¢) interpolating the function u(t) at the grid points
are specified by the equation.

n—1

EDIQ(E) + D Pit) DI Q) + Pa(t)Q +Z>\f / Ke(t,s) S DI~ Q(s)ds

=1
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Substituting t = t,41, r =0,1,2,..., N — 1, from Eqn.(5) then collocate Eqn.(5) at the uniform grid points
after substituting Eqn.(4) into Eqn.(5) then we obtain

((7’—|—1)h)°‘"{2[(1 —7r)anr](Qri1 — Qr) — [n(2r +1) — 2T]Q;}

'3 — o) h
X M)((’"nglhin_j;_l{i[(l —Pan-ir)(@ri1 = Qr) = lani(2r + 1) = 201G, }+pn<r+1)czr+1

= fra + 20! ”{25 LI K1, 9)[Q € DI Ay(s) + Qi a E DI By(s) + QS DI €y ()] ds
+ ftt:H Ke(trs, ) [QrngnL[Ar(s) + Qr+1ngm4Br(s) + er aCDfmeCT+1(5)‘| ds}

+)\m{zj_0 t”l/C (trt1,8)

Ai(s)Q; + Bj(s)Qjy1 + Cj(S)Q;—l ds

tr
+ ftr + ICm(trJrlv S)

A’I”(S)Q’r’ + Br(s)Qr+l + CT‘(S)Q;“| dS}

2((1=7) + Qn_syr)s Hp = Paprsry + s Wi(s) and

((r+ )=
I'(3 — ap—s)

Vi(8) = Pyrg) (@n—g(2r+1)=2r), s=0,1,....,n—1, r=0,1,2,...,N — 1.

The Eqn.(6) becomes,
QTH{’H,Z A [ Kon(trg1, 8)Br(s)ds — S5 Ae f /Cg(trﬂ,s)achmeBr(s)ds}
= QT{ZZ_S Wi(s) + 205" A ftrﬂ Ko(tri1,5)S D0 An(s)ds + Am f;:ﬂ Ko (trs1, S)Ar(s)ds}
+Q;{E Vin(s) + 2205, /\z ft T e(trga, s )CD " Crya(s)ds + Am f::“ Ko (trs1, S)Cr+1(5)d5} + fri1
+305 Ae{ﬂ 0 tHI Ke(tri1,s )[QjachmlAj(S) + Q1S D] By (s ) + QS OOy )] }

“V‘A Z] 0 tJ-H’C (7«+178)

A;j(s)Qj + Bj(s)Qj+1 + Cj(S)Q;‘| ds.
(7)

To acquire @, inserting r = 0 into Eqn.(7), we must enter Qo and @ into Eqn.(7) but as we see we have
the best Qo from the initial condition. To getting Qg from the forward formula, we ought to have Qgp ). So for
preparing Qgp ) we've critical approaches: (I) Trapezoidal Method and (II) First step of the linear spline.

I- Using Trapezoidal Method
Calculate the Eqn.(1)on interval [tg, t1] we obtain,
O, ()=t + iy pi(t1)S DY w(t) =ty + patr)un
Ft) + 05 N [ Kolte, $)E D u(s)ds + A [ Ko (b1, 8)u(s)ds
Recall the Theorem (1)

i—1

D ult)emr, = 5=y 2 [um_j) - u(ti_j_n] b
j=0
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where
« . 11—« l—a
b =0G+1) -7 e

hl_ﬁrnfl

m’%[ul — o]

a h™ _
First we can find & D} u(t)|i—¢, = )[ul — o), f;l Ke(t, s)aCDf’" ‘u(s)ds =

2 -«
and [ Kon(t1, s)u(s)ds = ﬁ Kug + K7uq|, the Eqn.(8) becomes
a 5 10 11

h—on el h—an—i
M[Ul - UO] + 21:1 pi(tl)m[ul — uo} +pn(t1)u1

e hl—Bm—e
= f(t1) + 205" A KA [ur — uo] + Am 2[KThuo + KTju]

h—%n h*&n*i 1 hlfﬁm—z , .
t1)) ——— . t1) — o - _ hgm
m{F(2—an) + 30 Pz( 1)F(2—an —) + pn(t1) /=0 )\421_‘(2_57714)]@1 Am BT

(9)

h=n han—t 1 hl=Bm—t
= S pilt) e = S MK+ A 2K t
%{HQ—%J+ = nt)p o T e Mapg =g,y H ki 4 (1)

So u; = Qgp ),
II- First step of linear spline(using R-Extrapolation Technique)

Calculate the Eqn.(1) on interval [to,t1], t = to + (i + Dhage, i = 0,1,...,2M —1, M* =0,1,..., M. and
ha = a7 is formed as
SOy u(t)] = to+(i+1)hps +ZZ 1 Pi(to+ (i + 1)hag)S Dy W) [t=to+ (i41)hpge
+pn(to + (i + Dhar )u(t) li=to+ (it 1) = f(to + (0 + 1)har-)
+Z )\ ft0+ Z"rl)hM* kﬁ(to + (Z + 1)h]W*’s)aCDfm—éu(s)ds
+)\m f;O“F(’L-"l)hIW* km(to n (Z n l)hM*,s)u(s)ds

(10)

Since by finite difference approximation and recall the theorem (2)

i

o R
aCDt w(l)lt=to+(i+1)hpe = 11(271\1&) Z
§=0

’Lb(tr + (Z —] + 1)h1\/[*) — ’U,(tr + (’L —j)hM*)‘| b;l

h
if M*=0,i=0, t=1ty+ (0+ 1)ho- and hy- = 5o+ = h, we obtain

2
_ " ud 1 —ud 5| bg = -t uy — ug |, the equation (10) becomes
re—a)| % 80| 06 I'2-a) ’
e e = 8| ey — e B
['(2—ay) it ) Jj=1 A=j+ =g |7

h_(i(n ii
1 _m
I Palto + (14 WM>mzmhm{

0 0
Upr* j41 — “le

+35-1 [u%*,i—j+l - U?w,z'—j] bﬂ%_ii} * palto (04 Dhar Juye i
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. m— m— P
= lto + (i + Dhor) + 75" M S5 A=
_5771—(
i , hyf . .
{2 Y a0 ke(to + (i 4+ 1)hare,to + th[*)m Z?:é [U%J*,d—j - u(])w*,d—j—l‘| bf ‘
h—ﬂmfz
+ke(to + (i + 1) har-,to + (i + l)hzw*)m (=41 — Uige )

+Z;:1(U(J)\4*,i—j+l - {U“?W*,i—j)bfm72 }
hopg ) i .
+Am% [km(to (i Dhare s t0)uQge o + 254 ko(to + (i + Dhar- to + dhag-)ufye 4
+km(t0 + (Z + 1)hM*,t0(Z + 1)h]y[*)u9\4*7i+1‘| .
hogs o M* /. . n—1 ) o, M*
m and Hk (Z+1)pk(t0+(Z+1)hA{*)+ZS:0 Pé(t0+(1+1)hM*)Ak (S),
VkeZt, s=0,1,...,k—1, i=0,1,...,2M —1 with A7™ (k) =1, Py(to+ (i + 1)hn-) = 1

Let ATM (s) =

o o M* [ hars som—1y .6,M*,0 43 M* AmPar | m M*.0
uM*,i+1{Hn (i+1)— 3 =0 /\L’ki+1,¢+1-’4m () - D) ki+1,i+1

_ fM*0 n—1 0 a,M* hys m—1 GM*,0 48,M* 0
=Jiy1 T {Zszo Paivt A (s) — 4 1—0 Aekily o At (€) pudys
i 0 0 n—1 p0 a, M* (;:\3Qn —10
_ijl [UM*,ij+1 - uM*,ij‘| (Zn‘:o Pii,i+1“4n (“)bj )

i d=1{ o 0 m—1 4,M™,0 M B —£
Fhare D g1 20 [UM*,dj - “M*,dj1] ( =0 ME1 g AR ()Y )

hare i 0 0 m—1\ 1.6,M*0 M* 1B —t
T Dimt | Uhae i1 — Unge i ( 1m0 Aekity o ARMT (O] )

/\m M* ;. m,M*,0 ] *
M*,0, 0 i m,M™*,0, 0
+ 5 kivrs unpe s+ Amhare D g0 ki U g

If M* =0, i =0and hg = & = h, we obtain

_ Amh
o m 4, . m!t0 ; m,
Ug,l{Hn’O(l) - % Ze:ol )\ékL?Aan’O(g) T kl,lo}

(11)
n—1 m—1 2,0 m,0,0
=+ {Zso pY 1A (s) — %0 > o )‘Zk1,1v4§ﬂo(f)}u8,0 + h?“’ﬁ,o ug g

So we can say u8,1 ~ Qgp ), from this we come to the conclusion that the path normal quadratic spline function
can be analyzed with two technique the first is using Trapezoid (NQST). And the second using First step of
linear spline (using Richardson Extrapolation) (NQSL).

3.2 Quadratic spline function using Extrapolation (VFID’s)

To sketching the quadratic spline proximity method for solving Volterra integro- fractional differential
equation Eqns.(1) and (2) using extrapolation, the interval [a, b]. First divided the interval [a, b] be into N-equal

h—
subintervals of length of h = Ta with endpoints, the quadratic spline Q(t) interpolating the function with
Extrapolation in the interval t € [t, 4+ thps=, ¢, + (i + 1)hps+] is specified by the formula

Qe i(t) = Ao s(OQhs s+ Bipe s(Q5EL, + Chpe s(DQN)

h
M~

r=0,1,....,N—1,i=0,1,....2™M —1, M*=0,1,..., M, hy~ =
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Where
r t— t7~+ZhM* - , t— (t, + ihy- 2
AM*,i(t)zl_ ((h) , BM*J(t):l—AM*,i(t): (h)> 7
=T+ i) (b + (4 Dhare) 1)
T - r M* r M) —
Chri(t) = 5 ,
M*
Thus

cp%or .. — — ) . — LA
D@0 S TEa) T “)]QM ‘

2 |(t—a)* ™ (t—a)l™@
R, | TB3—a) T(2-a)
2 ((t-a)?** (t—a)"
h3,. | T(3—a) I'2—a)

2 [(t—a)2e o1 t—a)~| ) r
7h?\4* [IM — <tr + (Z + i)hM* — CL) F(Q—a)] QM*,Z'

-2 [(t _ a)2—o¢ (t _ a)l—a

(tr + ih]\/[* — a) Q}N\/I*J_’_l

(tr +ihar — a) | Qe 441

From Eqn.(1) putting ¢t = ¢, + (¢ + 1)has+, then collocate Eqn.(5) at the uniform grid points after substituting
Eqn.(12) into Eqn.(5) then we obtain

2050 (2M i+ 1)1
h3,.T(3 — ay)
2R3 M i 1)
hM*F(3 - Ozn)

2M (= 1) +i(ay — 1) + 1

Qe i1 — QM]

2M7 (o, — 1) +i(an — 1) + an QM*»

2h27*a"*ii(2M*r+i+1)1704",”
128 D hase M
+Z” 1 Pii(tr + (i + 1)hy ){ 72, 16— an )

r ‘| } 2]7/3;@”7“ (2M*7= +i+ 1)1—o¢n_7:7:
M* i1 QM* i -

hM* F(3 — Ozn_“‘)

[2M*r(ami — 1) il —1)+1
[QM*T(@n—z‘i — 1) +i(an—s — 1) + éan—ii] Or T pate + (0 + Dhar=) Qs i1

o . m—1 r—1 rtj+1 . C Bm—t C

= flty + G+ Dhog) + S0 A [zj 8L ket (i D, 5)[S DI Ay (5)QS

m o — m— /7C
+O DI Bi(5)QF ., + S DI 0y(s)QY) }ds]

tr (1) R« . Bom—
T S ORI e (i D, 8)[C DE Ay 1 (5) Qi

+ DI By (8)Qhye saq + SDE T Oy 1(5)Q4) )ds

D hyr+ .
SO Byt 4 G D, s)

[ODm = Ay ()@ s+ CDE By (8) Qg iy + S DI Chpe 1(5)QN ) ] ds

r—1 prtj41 . N.c
Mo | 50 J17 7 bonlr (i D, )[4 (5)QF + By (5)QF0 + C5()Q5” s
1— T +1)h = , i, . § N
Jrz’:l tt;rj(sz;;*) Mk (e + (0 Dhars, $)[Aye 5 (8)Q0 j + Bipe j(8)Qp 1 + Chye () %}*,j]ds

trt+(i4+1)har* . r r r r T "),
I b (b + (4 Db, $)[Alye (8)Qe i+ Bhge i ()Qhpe i1 + Chpe o(5)Q4) 1ds

(13)
Let

2h?\/[:a1L75(2M*T+’L.+1)1_04("75) 2M*

Wn’:z(s):PS r+( hor T’(O& n—s 71)+Z(O‘ n—s 71)+1
M*, (tr+(i+1)hpr+) h?\/[*r(g _a(nfs)) ( ) ( )
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2h2:anfs(2M*T+i+1)1704(,,,_5) . 1
VUL (8) = Py i a—M M () — 1) 4 i(n_s) — 1) + = (s
=i (8) = Patt,+(i4 1)y Far T3 — i) (@(n—s) = 1) +ilam-s) = 1) + 55
n—1
My i(8) = Page 4 )hge) + O Wiie i(8), 7=0,1,...,N =1, s =0,1,...,n— L
s=0

i=0,1,....,2M" —1, M*=0,1,..., M. hp~ = SAF VM € Z" U {0}, then Eqn(13) becomes

r n,r m—1 ot (ik 1) hpge . S
QM*,iJrl{HM*’i(S) — Dm0 M f +z(sz*) M ke(ty + (1 + 1)hM*,8)aCD§ ZBM*’J-(s)ds
)\ ft ;(}::1 hop km(tr + (Z =+ l)h]\/[*y-S)B’]r\/[*’j(S)dS}

= fltr + (i + Dhare) + Q?u*,i{zg o Wit i(s)

00 A S I oy (b, 4 i+ Dby, ) DS AL (s)ds

+Am ft ;(,fri)hw km (tr + (i 4+ 1)hM*75)A§\4*,j(3)d3}
+Qf) T’{Z;’:& Vi () + S0 A ST Ryt + (64 Dhage, ) DE Clyp (5)ds
trt+(i4+1) A+ . -
+Am [, +1(hM*) Mk (t 4+ (0 + 1)hM*78)CM*,i(S)dS}

+ 30 A [Z ftﬁl ke(tr + (i + )b, )[CDEM_EAJ'(S)QE
+CD/3m /zB ( ) ]_H( )+aCD§771720j(8)Q§/)’C}dS

i—1 pte+(G+1D)ha= . Bm—e 7r -
ijo tr+j}]zM* M ke(te + (i + Dha, 3)[5Ds ZAM*,]‘(S)QI\/I*,j
ﬂnl— T T m— r ! T
+S D" B *,j(S)QM*,j+1(5) +aCD? ‘C *,j(s)Qg\/j)*,j]dS‘|

o lz 0 J Rt 4 (04 1hag-, )[4, (5)Q5

, i=1 ptet(G+1)hass .
+BJ'(5)Q]C+1 + C](S)Qg ]ds + ijo tr-‘rj(f]LM*) M km(tr + (Z + l)hM*,S)

(Al (8)Qhe s+ Bipe (8)Qge i1 (8) + Oy i(5) gz;fjws]

)

Eqn.(14) is obtained to find the approximate solution Q- ; , Vr = 0,1,..., N — 1, ¥i = 0,1,.. oM

h , , (P)
M*=0,1,...,M, hy+ = —~, VM € ZT U{0}. For finding Q, by forward formula Q, = QO, Qo is the

oM’ h
w, r=1,2,..., N, in this technique

we need to find Q§p) so in the same way such as how through from Eqn.(9) or Eqn.(11), from this we come to the

conclusion that the path Extrapolation quadratic spline function can be analyzed with two technique the first

is using trapezoid (EQST). And the second using first step of linear spline (using Richardson Extrapolation)
(EQSL).

initial condition Eqn.(2), using for next iterations Q +QT 1=

4 Numerical scheme

In this section, we present two examples in which their numerical results. In examples (1) and (2), we have
compared the results of this method for (VIFDE’s) of the second kind with collocation normal spline and Ri-
chard Extrapolation method the result shown in tables (1,3) an almost large interval to show capability of the
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method shown in table (4) for example 2. Finally, demonstrates figures (1,2) to compared numerical and the
exact solution of the examples (1) and (2) where h = 0.1.

Ezxample 1. Consider the linear VIFDE on 0 <t < 1:

6 DY Tu(t) + t§ DY? — 2u(t) =

(t — 252§ DY3u(s) + (t — 5)§ DO u(s) — (ts — 1)u(s)|ds,

where

=ﬂﬂ+A
2 20

2 1 2
)=t + 3t - 103 21 -2+
J) =—3t+5t+ ras)’ Tas A2 Geray

With the initial condition: 4(0) = 1, where the exact solution is given by u(t) = 1 — 2¢.
FEzxzample 2. Consider the linear VIFDE on 0 <t < 1:

t27(37 — 34t).

1
§ D2 u(t) - 5 §DF + (1+#)u(t) =

=ﬂw+At

ts§ D u(s) + (t* — 5)§ DPu(s) + et+5u(s)] ds,

where
f(t):et—th(t—1)2+t5—t3+t2—1+71 g1 3 ) 2728
r(3-28)\" 2-8
P < 2_p_ 1) ph__ 2 s
r@-p)\4-5 INCRS)
With the initial condition: u(0) = —1, where the exact solution of this problem is known wu(t) = t* — 1, and
8 =0.5.
Table 1
Exact and numerical solution of example 1
t Exact N =10
NQST NQSL EQST (m = 2) EQSL (m = 2)

0 1 1.0 1.0 1.0 1.0

0.1 0.8 0.8000004930653 0.8 0.80000000707939 0.8

0.2 0.6 0.6000007031481 0.6 0.60000071148317 0.6

0.3 0.4 0.4000010136467 0.4 0.40000222633954 0.4

0.4 0.2 0.2000013769366 0.2 0.20000484834216 0.2

0.5 0.0 0.0000017667637 2.496349159 e 7 0.0000084819165 7.57181976631 ¢ =7

0.6 -0.2 —0.1999978313918 -0.2 —0.19998695732248 -0.2

0.7 —0.4 | —0.39999742490777 —0.4 —0.39998156309772 -0.4

0.8 —0.6 | —0.59999701665405 —0.6 —0.59997541684731 —-0.6

0.9 —0.8 | —0.79999660662054 —0.8 —0.79996858034163 -0.8

1.0 —1 —0.99999619296744 —-1.0 —0.99996109404 —-1.0

LSE 5.3025254 e—11 6.2317591 e—34 3.7161423 e—9 5.7332455 e—37
R.Time/Sec 40.994059 51.198122 302.24999 419.6619

The result in Table (2) shows R-Extrapolation technique for solving quadratic spline methods using trapezoidal
and first step of linear spline for A = 0.05 (N = 20). For Example 1.

60 Bulletin of the Karaganda University



Approximate Solution of Volterra...

Table 2
The comparison of the solution R-Extrapolation technique
t Exact N =20
EQST(m = 2) EQSL (m = 2) EQST (m = 3) EQSL (m = 3)
0 1 1.0 1.0 1.0 1.0
0.1 0.8 0.800000008905707 0.8 0.800000006359992 0.8
0.2 0.6 0.600000050701418 0.6 0.600000045813416 0.6
0.3 0.4 0.400000151375986 0.4 0.400000137044427 0.4
0.4 0.2 0.20000031526505 0.2 0.200000284526254 0.2
0.5 0.0 0.00000053995763 1372334369 ¢ ® | 0.0000004860751345 | —7.73860979575 ¢ =7
0.6 —0.2 —0.199999179770634 —-0.2 —0.199999262960361 —0.2
0.7 —0.4 —0.399998849511254 —-0.4 —0.399998967571431 —-0.4
0.8 —-0.6 —0.599998474114693 —0.6 —0.599998632098907 —0.6
0.9 —0.8 —0.799998057255924 —-0.8 —0.799998259837467 —-0.8
1.0 -1 —0.999997601330418 -1.0 —0.999997852936052 -1.0
L.S.E 1.4269108 e—11 4.5677668 e—36 1.1456484 e—11 5.9886082 e—37
R.Time/Sec 855.47371 2374.498 2413.3623 2398.2578
Table 3
Exact and numerical solution of example 2
t Exact N =10
NQST NQSL EQST (m = 2) EQSL (m = 2)
0 1 1.0 1.0 1.0 1.0
0 —1.0 —-1.0 —1.0 —1.0 —-1.0
0.1 | —0.99 | —0.984097358703339 | —0.98385921585012 | —0.991476290775673 | —0.991479158909235
0.2 | —0.96 | —0.956638239698859 | —0.95627586881473 | —0.965258118725224 | —0.965263505489059
0.3 | —0.91 | —0.914517584731656 | —0.914089026848564 | —0.921013271619213 | —0.921018780914492
0.4 | —0.84 | —0.856459372872957 | —0.855994041063225 | —0.859259280306947 | —0.859264546925167
0.5 | —0.75 | —0.782066581154528 | —0.781577394923225 | —0.780434507191968 | —0.780439517960847
0.6 | —0.64 | —0.691478975785645 | —0.690968031530877 | —0.685006055226451 | —0.685010914123675
0.7 | —0.51 | —0.585278870476111 | —0.584740180555245 | —0.573535077158801 | —0.57353994630581
0.8 | —0.36 | —0.464504501114389 | —0.463925265789229 | —0.446739340155018 | —0.446744421203363
0.9 | —0.19 | —0.330716434084407 | —0.330077470104528 | —0.305564188908158 | —0.305569718588994
1.0 0 —0.186096022057057 | —0.185371604481513 | —0.151269656763997 | —0.151275909797876
LS E 0.075036756 0.074289865 0.051271853 0.051277655
R.Time/Sec 46.939625 53.091482 355.20677 297.93127

The result in table (4) shows the least-square errors and running times (elapsed time) for quadratic spline
methods with different values of steps size h. For Example 2.

Table 4
Comparision for different value of N
h 0.1(N = 10) 0.05(N = 20) 0.033(N = 30)
Quadratic LS.E R.Time /Sec LS.E R.Time /Sec LS.E R.Time /Sec

NQSL 0.074289865 53.091482 0.066459532 136.90037 0.059164974 308.13296

EQSL (m =2) | 0.051277655 297.93127 0.046061105 1115.3817 0.044419219 2788.2102

EQSL (m = 3) | 0.045270078 1908.428 0.043314536 3855.422 0.04268915 8619.3941
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15 &

u(t)

=15

=== Exact Solution Numerical Solution By NQST =miwm Numerical Solution By NQSL
=== Numerical Solution By EQST(m=2)  ==é=Numerical Solution By EQSL (m=2)

Figure 1. Compared numerical and the exact solution of the example 1, h = 0.1.

t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1, 11,
OI L L L L L
-0.2
-0.4
E -0.6
=
-0.8
8 qp————i’—-‘”"/
12 v
—@— Exact Solution —@— Numerical Solution By NQST
Numerical Solution By NQSL Numerical Solution By EQST(m=2)

—&— Numerical Solution By EQSL (m=2)

Figure 2. Compared numerical and the exact solution of the example 2, h = 0.1.

5. Conclusion

In this work, we have fully attempted to find the numerical solution of the Volterra integro-fractional di-
fferential equations (VIFDE’s) by using quadratic spline approximate. The numerical procedure and methodology
are done in a very straightforward and effective manner. Through the numerical calculation, we confirmed that
the Richardson Extrapolation method has the highest degree of accuracy. On the basis of this work, tables (2)
and (4) displayed comparison between normal quadratic spline and using Extrapolation method with different
step sizes. Furthermore, interpolating quadratic spline for linear function is closer to the quadratic function as
displayed in tables (1) and (3). Likewise, new techniques using the first derivative at the initial point by the
First step of linear spline(using R-Extrapolation technique), then our solution would be better and the ration
of mistake would be fewer in comparison of the method of Trapezoidal at finding first derivative at the initial

point. Figures (1) and (2) represents which one is the best technique for solving (VIFDE’s).
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K.X.®. Txsamep, I Axmen, J1.X. A6xymra

KBamparThlk criaiiH-(yHKIIUACHIH KOJJaHa OThIPhIN, BoabTeppain
nHTEerpo-oe/miexkTi anddepeHnua ablK TeHAeyIePiHiH >KYbIK, [IeIniMi

Maxkasaza KaJIbIThl KBaAPATTHIK CILIAiH-(DYHKIMSCBIHA Herisgenren BosbTepp/iiH WHTErpo-6eJImeKTi-
nuddepeHITIANIBIK, TEHIEY/IiH, TIENMIiH KYBIKTAYIbIH €Ki yKaHa 9iCi YCHIHBIJIFAH, ajl €KIHII 9/1iCcTe Tuc-
KPEeTTi KOJIJIOKAIlUsl HYKTEeJIEPiH KOJIJaHa OTBIPBIN, PUYapICOHHBIH SKCTPAIOJIIMS 9iCi KOJIIAHBLIFaH.
BeusmexTi rybinapuiaper Kamnyro ryciniringe kapacreipsiasl. Ourapably 1piesaepiMer Katap, Puaapicon-
HBIH, 9KCTPAIOJISAIUs HyKTesiepine KamyTo TybIHIBICBIHBIH, AKBIPJIBI Al BIPMAIIBLIBIFBIH KOJIJAHY VIITiH KaHa
TeopeMa eHri3ii. Bactankbr HykTee OIpiHI TYBIHABIHBI KOJJAHATHIH KaHa dJIicTep HeridiHje KeJieci exi
JKarmail aJbIlHFaH: OipiHIMICIHIE Tpamenus epeXkeci, eKiHImiciage PudapacoHHBIH, 9KCTPANOJISIUs 9/TiCi He-
rizifze ChI3BIKTBIK, CIJIARH-(DYHKIMACHIHBIH, OipiHII KaJaMbl KOJIIaHbUIFAH. ATall alTKaHia, 6argapiama
Matlab (R2018b) Tanmay MblcanmapblHia KeATiplireH. OAicTep/in oHIMIIIIN MeH CeHIMAIriH Kepcere-
TiH CaHIBIK MbICAJIIap 6ap, COHBIMEH KaTap, OCBI TEHJEYJep VIIH KAaXKeTTi MHTerpaiiapIbl ecenTey VIImiH
Kepruc Knenmoy epeskeci KomaubLIIbL.
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K.H.F. Jwamer, Sh.Sh. Ahmed, D.Kh. Abdullah

Kiam cesdep: maTErpo-60iIeKkTi mudepeHInanabK, TeHaey, KamyTo TYBIHIBICH, KBaJIPATTHIK, CILJIANH,
sKcTpanossanua daici, Kienrroy.

K.X.®. Txsamep, I, Axmen, J1.X. A6xymra

ITpubanrkenHoe pereHne MHTErPo-APoOHBIX AudPepeHITnATIbHBIX
ypaBHeHuii BosbTeppa ¢ ncnosb3oBaHrEeM KBaJpPaTUIHOM
CILTAaTH-PYHKIINHT

B craTbe mpemjoxkeHbI qBa HOBBIX METO/A AIMIPOKCUMAIIUN PEIEHUsS] WHTErPO-ApOoOHO-Iud dhepeHnaib-
Horo ypasaenus Bosbreppa (VIFDE), ocHoBaHHBIE HA HOPMAJIBHOM KBAJAPATUYIHON CILUIaitH-DyHKINHT, & B
OCHOBE BTOPOI'O METOJIa JIEYKUT METOJ[ SKCTPAIOJSIIUA Prudap/icoHa ¢ MCIOJIb30BAaHUEM JUCKPETHBIX TOYEK
Kosokaruu. JIpoGHbIe TPOU3BOIHBIE PACCMOTPEHBI B Bocnpusatuu Kamyro. Bmecre ¢ ux mokazareabcTBOM
BBeJIeHa HOBasl T€OpPEMa I TOYEK IKCTPAIOIAINN Puyapicona Ajis UCIOIb30BaHNsT KOHEYHO-PA3HOCTHOMN
anmporcuManuu npousBoauoit Kamyro. HoBble MeTOIBI ¢ MCIIO/IB30BAHUEM MTEPBOI TPOU3BOIHON B HAYAIb-
HOI TOYKE TAKOBBI, YTO MOJIYIEHBI CJIEIYIONINE JIBA CJIydasi: IEPBbI C UCIOJIB30BAHNEM TPABUJIA TPATIEINN,
a BTOPOI — C yYeTOM IEepBOro mara JUHEHHON CIIaiiH-(pyHKINK MeTOI0M dKCcTpamnosnuun Puaapacona. B
JaCTHOCTH, IPOrpaMMa IpuBeneHa B npuMepax anaausa B Matlab (R2018b). Vmerorcst unciioBble mpuMe-
PBI, 9TOOBI IPOIEMOHCTPUPOBATH MPOAYKTUBHOCTh W HAJIEXKHOCTH METOJIOB, & TAKXKE CJIEJIOBATH MPABUILY
Kaenmoy Kepruca s Berancienns: TpeOyeMbIX HHTETPAJIOB JJIS STHX yPABHEHUN.

Karouesvie crosa: naTerpo-1pobHoe nuddepeHIalbHOe ypaBHEHNE, Ipou3BogHast KalyTo, KBaJpaTHIHbIH
CILTaMH, MeTOJI dKcTpanoJsimu, KieHmoy.
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To solving the fractionally loaded heat equation

In this paper we consider a boundary value problem for a fractionally loaded heat equation in the class of
continuous functions. Research methods are based on an approach to the study of boundary value problems,
based on their reduction to integral equations. The problem is reduced to a Volterra integral equation of the
second kind by inverting the differential part. We also carried out a study the limit cases for the fractional
derivative order of the term with a load in the heat equation of the boundary value problem. It is shown
that the existence and uniqueness of solutions to the integral equation depends on the order of the fractional
derivative in the loaded term.

Keywords: loaded equation, fractional derivative, heat equation, Volterra integral equation, special function.

Introduction

The study of fractional differential equations was actively carried out as in previous decades [1-4], and now
interest in this area continues to grow [5-7]. This is due both to the development of the fractional integration
and differentiation theory, as well as applications of the apparatus of fractional integration and differentiation
in various fields of science. The physical interpretation for fractional differential equations was considered in [3]
from the point of view of the Riemann-Liouville’s derivatives, as well as in [4]. In [6] a boundary value problem
with integral conditions is considered for one class of fractional differential equations involving impulses. Some
results of the existence of a solution for higher order differential equations with integral conditions can be
found in [5]. Also an important section in the theory of differential equations is the class of loaded equations:
Ku = Lu(z)+Mu(x) = f(x) in a domain @ from R"™, where L is a differential operator, and M is a differential or
integro-differential operator, including the operation of taking the trace of the function u(x) on manifolds from
the closure Q of dimension strictly less than n. Solving many important problems, for example, on the optimal
management of the agroecosystem, is reduced to the study of such equations. In [§8] on numerous examples
A.M. Nakhushev showed the practical and theoretical importance of studies on loaded equations. In the papers
of M.T. Jenaliev and students of his scientific school, the theory of loaded equations was further developed
[9-12]. In [11], [12] loaded differential equations are interpreted as weak or strong perturbations of differential
equations.

Of interest are boundary value problems for the fractionally loaded heat equation when the loaded term is
presented in the form of a fractional derivative. The goal of papers [13—14] is to clarify the character of the
fractional load on the solvability issues of the first boundary value problem for the heat equation, the load moves
with a constant velocity. The loaded term is the trace of the fractional order derivative on the manifold z = ¢,
namely, the loaded term is represented as a Riemann-Liouville fractional derivative. The resulting Volterra
singular integral equation has a nonempty spectrum for certain values of the fractional derivative order. In the
papers [15-16] the loaded term is represented in the form of the Caputo fractional derivative with respect to
the time variable and the spatial variable, and the order of the derivative in the loaded term is less than the
order of the differential part.

In this paper, we study a boundary value problem for a fractionally loaded heat equation (the loaded term
of the equation is represented as a Riemann-Liouville fractional derivative, the load moves according to an
arbitrary law). The boundary value problem is reduced to a Volterra integral equation of the second kind with
a kernel containing a special function, namely, the degenerated hypergeometric Tricomi function. The limiting
cases of the order of the fractional derivative in the term with the equation load are also investigated, and
continuity in the order of the fractional derivative is shown. The solvability of the integral equation in the class
of continuous functions is established depending on the nature of the load for small values of time.

*Corresponding author.
E-mail: isagyndyk@mail.ru
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1 Basic definitions and some background

Let us first recall some previously known concepts and results. The first one is the definition of the Ri-
emann—Liouville fractional derivative.

Definition 1 ([1]). Let f(¢) € L1]a,b]. Then, the Riemann-Liouville derivative of the order 8 is defined as
follows

s 1At () )
Da,tf(t)—r(n_ﬁ) dtn/ (t_T)ﬁ_anT, B,a€R, n—1<pB<n. (1)
When a =0, n =1 we have:
8o L d [t f)
Do,tf(t)— T(1-3) dt/o (t—T)ﬁdT. (2)

From formula (1) it follows that

DY f(t) = f(t), ~Dicf(t)=f"(), neN. (3)
We also give definitions and some properties of special functions that arise in the study of boundary value
problem posed in the work.

f p (—¢?) d( is the integral of probabilities;
o

erfz =

3\

oo

f ( CQ) d( is the additional integral of probabilities.
[

‘ v

erfcz =
Deﬁmtwn 2 [17; 119]) Linearly independent solutions of the equation

d

D? —2)D — =0 = —
2D% + (e~ D —alw(:) =0, D=1
are functions ®(a, ¢; z) and ¥(a,c; z), where ®(a, ¢; z) is the degenerate hypergeometric function:

ala+1)(a+2) 2*
clc+1)(c+2) 3!

z ala+1)2?
11 ce(e+1) 2!

D(a,c; z) 142
c

+ + .-

and U(a, c; z) is Tricomi degenerate hypergeometric function [18; 1072]:

r(l--c¢)

L(c—1)
IFa—c+1)

) 7P (a —c+1,2 — ¢ 2).

U(a,c;2) = ®(a,c;2) +

Tricomi degenerate hypergeometric function can be represented as an integral ([19; 365], formula 72.2 (7)):
1 * c—a—1 _
Waez) = s [T AT e [Rea >0 (1)
L' (a) Jo
For large values z, an asymptotic formula holds ([17; 127], formula 4.7 (1)):

1
W (a,62) ~ 2% F (a,l fa—c —) | (5)
z

3
|z| = 00, Jargz| < 5 6 €> 0,
where 5 Fjy (a, 1+a—c —%) is a generalized hypergeometric series defined by the formula [17; 136]

k

k=0 (b1)y; (b2)y, - (bg), K

qu (CL1, A2, ..., Ap; bl, bQ, ceey

where

is the Pohammer symbol.
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Degenerate hypergeometric functions for some values of its arguments are related to a parabolic cylinder
function (Weber function) D, (z) [17; 212]

vy a2 (1 2
D) =2 T u (11 55 -

L2 N ( v 1 z2) 2z (1—V 3 z2)
=2ze 4 L i — @ R 6
{r(lg) 2°2°2) T (-3 2 22 (6)

Formula (6) is the definition of a parabolic cylinder function D, (z).
There is also a representation of the Tricomi degenerate hypergeometric function in terms of the Whittaker
function W ,,(2) ([19; 264| formula 2.20):

U (a,b;z) = 2T ed Wi g1 (2). (7)

For the function W ,(z) z = 0 is a branch point, a z = oo is an essentially singular point [18; 1074].
Therefore, we will consider this function only for |arg z| < 7.

The natural development of fractional calculus is the theory of differential equations with fractional deri-
vatives. At the first stage of the study, we will use the method of integral equations, in which the boundary value
problem is reduced to solving the corresponding integral equation with further transformation of the kernel of
the obtained equation. Such methods make it possible to formulate boundary value problems more compactly
than differential equations, taking into account all the conditions of the problem.

The considered problem is reduced to an integral equation by inverting the differential part.

It’s known [20; 57] that in the domain Q = {(z,t) | >0, ¢ > 0} the solution to the boundary value
problem of heat conduction

w = a%ugy + F (z,t),

u‘t:O :f(x)a u‘xzo :g(x)a
is described by the formula

u(x,t):/oooG(x,@t) f(f)dﬁ—i—/o H(z,t—171) g(r)dr+

+/Ot/OOOG(a:,§,t—T)F({,T)d{dr, (8)

1 (x - &) (z+8)°
ot () 22))

e 1) — 1 22
(2, )72\/ﬂ'at3/2 xp dat)’

The Green function G (z,£,t — 7) satisfies the relation

/Oooc(x,g,t—ﬂdg:erf(w%). )

2 Statement of the fractionally loaded boundary value problem of heat conduction

where

In the domain @ = {(x,t) |z >0, ¢ > 0} we consider the problem
Up — Ugg + A {pDou (x,t)} |I:’Y(t) = f(z,t), (10)
U ‘t:o = 05 u |:6=0 = Oa (11)
where ) is a complex parameter, TDg s u(z, t) is the Riemann- Liouville derivative (2) of an order 5,0 < 8 < 1,

~(t) is a continuous increasing function, v(0) = 0.
The problem is studied in the class of continuous functions.
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3 Reducing the boundary value problem to an integral equation

Lemma 1. The boundary value problem (10)—(11) is equivalently reduced to a Volterra integral equation of
the second kind with a kernel that contains a special function.
Proof. We invert the differential part of problem (10)—(11) by formula (8):

b 1 u(€,9) ,
u(x,t :f)\// Gz, &t —T / dédr+
(=) o Jo ( ){F( — B)dr (7'—0) _
§=(7)
t oo
+ [ [T Gwet-niendar
o Jo
Taking into account relation (9) and introducing the notation
t oS]
fl (.’E,t):/ / G(.’E,§7t—7')f(§77')d7' (12)
o Jo

we get the following representation of the solution to the problem (10)—(11):
u(z,t) = — erf< ),u7'd7'—|—f z,t), 13
(z,1) ; Wi (7) 1 (z,1) (13)

where

(14)

- 1 u (€, 0)
p(t) =, DOtuft ‘{ y(t) _{F( 5)d7/ (7_9)6 9} e=v(1)

From (13) we take the derivative of the order 8 with respect to the variables ¢ on both sides and put
x = (t). On the left side, we get the function p (t). We also introduce the notation according to formula (14)

_ B 1 d )
f2 () = Do, 1 (2,0 oy = (1=p)dt Jo (t—1)° dT a=7(t) "
We first calculate the derivative:
d [t 1 T T o<o<r|
s = | =) ([ ert (=g niran) am= | 52557 | -
d t t 1 d t
=5 /. #®) (A et (m) dr) do = %A 1 (0) I (x,1,6,8)ds, (16)
where . .
T

I(x,t,G,B) = /0 m@'ff (2 m) dT. (17)

We calculate I (z,t,0, 3).
I(z,t,0,5) :/Gtu_iyjj%/owﬁe—*dm:
:;E/waj)/ot(t_lﬂ Zdez—i—/—shOO /9+ —r e drds —
= [ 00 g [ e

<(t— 0 — 4“’;) —(t— 9)1‘5) dz = m/oﬁ e dzt

68 Bulletin of the Karaganda University




To solving the fractionally loaded...

2(t— )"
+( )

422
SVE=0

=07 2

where

oo 9\ 1-8
=(t—0"" ’ Pl R (. dz = ||¢ =22 =
= 2yt — 0

B (t _ 0)1*ﬁ +o0 e o3 22 1-8
2 /Le ¢ (54(t—0)) dz.

10t—0)
To calculate the last integral, we use the formula 2.3.4 (6) from [21; 261]. Then we obtain

(t=6"" .

Il (xataoaﬂ): 2 ( B)

where ¥(a, ¢; z) is Tricomi degenerate hypergeometric function [18; 1072]
Substituting (19) into (18), we get an expression for (17)

(-0 ar(1-pB) (t—0)2" a2 3 a2
I(z,t,0,8) = =5 — exp(—M)qf(Q—ﬂ,, (

2\/T t—

By virtue of the asymptotic formula (5) (as ¢ — 7) and

I E - 0
fim (t=m)* " e |~y ) =

after differentiation operation equality (16) can be rewritten as

| 1-8 2/1
2

o) o )

Let us introduce the notation z = 4(257_2 =>t—T7= ﬁ.
T) 4z
Then

! —Tli'B x — _T%*ﬂ
J(t;x;ﬁ):/oﬂ(t)d[(t ) ra-p)t—mr) y

N

t—7)>

Nl

To calculate the derivative in the second term of equality (20), we use formula (

n=1:
jt((t_ﬂ% Bexp(—ll(th)>\I’(2 ,@,2, (fT)»

4
x1=28 ¢ 1 3
_ B-1 _
- 21-2p dz <Z 2 eXp( Z) < 721 ))
1-1*25 3
—Z Pz - \1/ =
TR exp (—2) Ty T

1 2

= T T (‘45—70 q’(l i)
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2°4(t—0)

5 x’ 3. _ T s .3,
exp <4(t—7‘)) v <2ﬂ, X 1= T)> = 5128 * exp(—z) U (2 5,2,7;) .
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Then expression (20) can be rewritten as:

J (t;; 8) /Otu(f) l(t _17)/3 - Q;F(EI_T@LQ exp <4(iﬂ) v <1ﬂ;‘;’;4(:’j7>>} dr. (21

Now from (13) after taking the fractional derivative of order 8 and substituting = (t) taking into account
the notation (14) and (21) we obtain the integral equation:

)+ r(lA— 8) /ot (tﬂ_(T P 2\F/ Bﬂ o <_4?t2—t)7)> :

v (1-55 ) wyar = 1.

So, the boundary value problem (10)—(11) has been reduced to the Volterra integral equation of the second
kind:

£+ A /0 Ky (b7 p(r)dr = fo (1), (22)

with the right-hand side f2(t), defined by formula (15), and the kernel

_ 1 _ v () o [0 53 7
Kﬁ(t’T)*r(l_ﬁ)(t—r)ﬁ o7 (t— 1)+ 3 p( 4(t—7)>\y(1 5’2’4<t—7>)’ (23)

where VU (a,b,y) is the Tricomi degenerate hypergeometric function that can be represented as an integral (4).

4 Continuity in the order of the derivative in the loaded term of the problem

Lemma 2. For boundary value problem (10)—(11) there is continuity in the order 5 of the derivative in the
loaded term of equation (10).

Proof. We consider the limiting cases for the fractional derivative order of the term with the load in the
equation (10).

I. B=0. Then from (2) and (3) we have

Dg,tu (,’E, t) ’z:—y(t) =u (337 t) |gg:»y(t) =u (’)’ (t) ,t) .

From (10)—(11) we get a boundary value problem when 8 = 0:

ut*“ﬂchF)‘/‘(t) :f(:c,t),
u(z,0)=0; u(0,¢t)=0,

where p (t) = u (v (t),t).
We write down its solution inverting the differential part by formula (8):

u(z,t) = — /Oterf <2F) () dr + fi (=), (24)

where P
fl(m):/O/O G (.6t —7) f (€,7) dédr.

When 2z = v (t) taking into account the notation u (7 (t),t) = p (¢) from (24) we obtain the Volterra integral
equation of the second kind:

w2 [ et (53 i =10 (25)

where fs (t) = f1 (7 (t),1).
Now we find lim from (23).

B—0+0
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The function under the limit sign is definite and continuous for g8 = 0, therefore, we can make the passage
to the limit taking into account formula (4) and formula 2.3.4 (5) [21; 260]

v (1) 72 (1) 3.7
a0 (072 1‘mexp<‘w)‘l’(l i) -

)
- Mvétt)f p( >>/

" p( Z;t)ﬂ)dg‘
)

So, ﬁh{)nw Kg(t,7)=erf ( ) ) Then equation (22) coincides with equation (25) for 5 = 0.
—
II. p=1. Then from (2) and (3) we have

du (z,t)
Dy (2,1) [a=y) = =7 le=r(r) = 1 (@:8) [a=yq0) -
From (10)—(11) we get a boundary value problem when § =1

U — Ugy + )‘N(t) = f(x,t),
u(x,0)=0; u(0,t) =0.
where p (t) =ug (2,1) [pmrye) -

We write down its solution inverting the differential part by formula (8)

- /Oterf<2\/7) (1) dr + 1 (2,1),

where the function fi (x,t) is defined by formula (12).
We calculate the derivative with respect to ¢ of (26):

¢ 2 T
ug (2,t) = /\{N(t) +/0 %GXP (4(t—7)> (W) () dT} + fie (@, ).

Substituting # =~ (t) and taking into account the notation w; (#,t) [,—) = s (t) we obtain the Volterra
integral equation of the second kind:

pit) — 2 0

2(t
1+ A 0 Qﬁ(t—T)S/Z exp <_4’Zt_)7_))/$(7—)d7—:f2 (t), (27)
where f.Q (t) = H%flt (v (t),1).

Taking into account formula (4) and the well-known relation lim0 INa) =
a—r
B — 1—0 from (23) we get:

oo when taking the limit at

(1) 7 ()
ﬁgrlnoKB (t,7) = 7)3 exp <4> X

2
Xﬁgrlnol“ 1-p / & +§ﬂ 2exp( Mt))g)dg,

To calculate the last integral, we use the formula (12) from [21; 262]
Then the limit relation (28) can be rewritten as

(28)

1 2® 0\ . 22T -pB) 7 (1)
ol (K (6,7) = = ooy o <_8(t—7-) ) S o Pw <>

(1 2(t—1)
SR ) LI W 1 BN A Gl )
ﬁ“‘ﬂep( 8“—T>>Dl< 2<t—7>> 2ﬁ<t_7>3/2€p< 4<t—7>>'
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Here, for the parabolic cylinder function Dog_1(2), we used formula 9.251 from [18; 1080] when 8 = 1:
2 d _z22 _z2
Dy (z) = —e1 %(e 2):2:6 T,
So for equation (22)

| S ) (- 220
é;rrﬁKﬁ(taT)— 2\/7?@77)3/2 p( 4(t—7))‘

The obtained result coincides with the kernel of integral equation (27).

Lemma 2 is completely proved.

5 Connection of the singularities of the integral equation kernel with the fractional derivative order in the
problem loaded term and with the load behavior. Main result

To establish the main result of the paper we investigate kernel (23) of integral equation (22), which has
singularities for 7 = ¢ and ¢ = 0.

Direct investigation of kernel (23) is difficult, since the kernel contains the degenerate hypergeometric Tricomi
function. Therefore we find

¢
tl}(r)r_}_o/o Kg(t,7)dr.

Theorem. Integral equation (22) with kernel (23) for 0 < 8 < 1 and with 7(¢) ~ ¢“ in the neighborhood of
t = 0 is uniquely solvable in the class of continuous functions for any continuous right-hand side f2(t) defined
by formula (15), if 1 <w <1-28or0<w<i, 0<B<I

Proof. We have . .
AAKﬂuﬂderw{iﬂ)A @dif—

and when 0 < 8 < 1:
todr 1 1
= =8, 30
A t—7) 1-8 (30)

To calculate the integral in the 2nd term of expression (29), we use the representation of the Tricomi function
in terms of the Whittaker function by formula (7):

Then the integral in the 2nd term of the expression (29) takes the form

f(amz/otmexp(_m> @(1_[3;2;4?:%%7:
)

23/2 t 1 2 n 2 "
:73/2/ (t—T)i 5exp<_ 2 ) )Wﬁl.l (’Y) dr =
(v ()" Jo 8(t—r7) w1 \4(t—1)
22571 +oo e . 23/2 t%7 ,YQ t 72 t
- 26-1 /2 Fies Ws_1.1(2)dz = ———7 exp (— ( )> Ws 5.1 < 4( )> . (31)
(v (1)) =8 (v (1)) 8t t
In the calculation, we have introduced the replacement z = 74’59) and used formula 2.19.5 (13) from [19;

217.
Let (t) ~ t“ when t — 0+ 0. Then (31) can be rewritten as (in the neighborhood of the point ¢ = 0):

1 1
w 2w—1 2w—1
exp <—8t ) LLB*%;% <4t ) .
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For Whittaker function, we use formula 7.2.2 (5) from [19; 366]:

12w—1 _o—2,1 1ot ,312w1
WB_%J% <4t ) =2"21¢2 eXp <—8t v 2_ﬁ7§’it .

I(t:B) =t exp (—it2“_1> <2 ﬁ,§ 1152“’— )

For Tricomi function ¥ (a, b, z), we use representation (4) and then we apply formula (12) from [21; 262|:

$—B-w o0 3
I(t;8)= ﬁ exp (—it2“1> /0 IS +§)’B_5 exp <—it2w1§> d¢ =

€
|
oo

Then

5 1 1 .
— 938 1262w o (_th—1> Don (t”_'z) . .
PA78 -3\ 2 (32)
So, substituting (30) and (32) into (29), we get 0< 3 <1 when t— 0:
P8 28 d 1 1,
Ky (t,7) -~ A-26-w o (_t2w1) Don (t“z) . 23
Kot = gy = 7 e () P (3 -

Cases are possible (when 0 < 8 < 1):
1)2w—1>0.1f0< B <1, then -1 -28—w < 3.
We first calculate Dog_3 (0) using formula 8.3 (1) from [22; 125] and formula 194 (3) from [18; 299].
26-5 [ 2 26-3 3 1\ 2°-37
Dag—5(0) = 7/ 2P (1+6)" P dt = —5——B ( _g;) =2 VT
’ L (3-8)Jo rZ-p) \2 72) TE-5)

2 2

Then from (33) when w > £ and 1 =28 —w >0 (0 < < 1) we have:

: if 1-28—w>0, w>3i 0<B8<1,;
}in%/ KBtTdT{ ey i 1-28-—w=0, w>3, 0<B< (34)
- 00; if 1-20-w<0, w>1i 0<B<1.

We consider the case 8 = 1. It was shown above that

S [ N (i OB
K (t,7) = Qﬁ(t*T)B/Q XP< 4(1&—7)).

If v(t) ~t¥ at t — 0+ 0 then

/ Ky (t, 1) /0 2\f(ttw—7-)3/2 exp (—4(:257_>> dr. (35)

After introducing the replacement

_ t2w _ _ ﬂ'
z= \/ 4(t—7) T)’ t—7= 4220 dr 223 dZ

2w—1
7'=0:>z—%t 2, T=t=2z— +00

integral (35) takes the form:

o [ee 23,3 42 9 1 201
/ Ky (t,7)dr = 2\f e e ﬁexp(—z )dz:—erfc <2t 2 >
Then . )
. e & if w>35;
tLI(I)I}rO/O K (t7)dr = { 0; if 0<w<i. (36)
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By the condition stated, the function ~(¢) increases in the domain () and v (0) = 0. Therefore, the case
w < 0 is not considered.

Consider the case 0 < w < % and 0 < 8 < 1. Then in (33) argument of the parabolic cylinder function
— 400 if t = 0+ 0. Since there is an asymptotic expansion of the function (see formula 9.246 (1) [18; 1079])

we obtain

t1=p s 1
i = 1 U — 1 27 w(l_ﬂ)_?’ﬁ _ —
til%ﬂo/o Kp(t;m)dr = lim T 2-8) w g, B P ( 4té—w> 0 (87)

1
It remains to investigate the case w = 3 for different values .

Let be 0 < 8 < 1. For = = 7y (t) = v/t equation (22) has the kernel:

I S I
B = a7 2vma_n P ()

and the right side according to formula (15) when x = v/t. Kernel (38) has singularities at 7 = ¢ and ¢ = 0. We
find

=5 t 3 t
Kp (t, — |V (1-0;=;——— | dT.
/ s (t:7) T(2-5) 2\[ t_76+§ eXp( 4(t—7’)) ( 6’2’4(15—7)) i
Repeating the above calculations, we get a formula similar to (33), when 0 < 8 < 1
t1=p 23~ 1 1
Kg(t,7)d - 2720 ex <—>D _ <> 39
[ et = g -2 P7s) P\ )
We calculate Dag_3 (%) using formula 9.241 (1) from [18; 1078].
Dog_3 <1> - ; 9%=% =526~ 3 /+°° 21 672m2+%id1‘.
P\Vva) T Ve .

To calculate the integral

+oo .
J(8) :/ e g

we use the formula 3.462 (3) from [18; 352]
2526

1 e 28—1  —2z%—i % _i 1
TB) = [ 07 e Ve = S VR Dags { o5 ) -

Then ) )
pass (75) = (5=0) P (53

Note that the argument of the parabolic cylinder function decreases exponentially with the denominator >

remaining positive. It was previously calculated that

25-5 /7

D2B73(0) = T (2 _ ,B) .

So we obtain that Dsg_3 (%) is a finite constant depending on .

1
Then from (39) we have (when 0 < 5 <1 and w = 5)

¢ 0; if 0<

lim Ky (t,7)dr = { const #0; if B ; (40)
e 1
4
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Now consider the case for v (t) = v/t and 8 = 1:

¢ t [t d t
/ Ky (t,7)dr = — Vi / T 5 exp(—) dr=| z=Vt—1,7=t—-22, || =
0 2V Jo (t—7)2 A(t-17) dr = —2zdz

N 2 [t . 1
= —ﬁ . ?e 422 dZ = _ﬁ % e dg = —eTfC 5 .
Then
. 1
%1_1}(1) ; Ky (t,7)dr = —erfc <2> #0, (41)

if v(t) = v/t and 8 = 1.
Summarizing results (34)—(41), we get the main result. The theorem is completely proved.

Conclusions

Under the conditions of the theorem, kernel (23) of the integral equation has a weak singularity. Therefore,
the method of successive approximations can be used to find a unique solution to the equation (22) in the class
of continuous functions. And the corresponding boundary value problems are well-posed in natural classes of
functions, i.e. loaded term is a weak perturbation.

If w> % and w > 1—28 when 0 < § <1 for v(t) ~ t“ at t — 0+ 0 integral equation (22) is not solvable
by the method of successive approximations. It can be shown that the corresponding homogeneous equation
for some values of the parameter A\ will have nonzero solutions. If the uniqueness of the solution to the first
boundary value problem is violated, then in this case the load can be interpreted as a strong perturbation.
So, the existence and uniqueness of solutions to the integral equation depends on the order of the fractional
derivative in the loaded term.
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M.T. Kocmaxkosa, C.A. Nckakos, JI.2K. Kacbimora
2Koifb1aThiH OOJIBICTAFBI >KbLITYOTKIBTIITIKTIH
eKieJmeM/Ii MmeKapaJablK eceOiHiH ImelnryiHe
Makamaga ysimiccis dyHKIUAIAD KIACBIHAAFBL KBUIYOTKIMIITIKTIH GeJeKTi->)KyKTeMesi TeHeyi yiin
METTIK eCell KAapPaCTBIPBUIFAH. 3€PTTEY OICTEpl IMIETTIK eCenTep/l MHTErPAJIBIK TEeHIEYIepre KeaTipy-
re Herizjie/ireH 3epTrey OOJIbII TadbLIaIbl. KoWblLIran ImeTTiK ecern JuddepeHnua bk OoJiKTi aiHaJI-
JBIPY apKbLIbI eKiHmi TekTi BosbTeppa MHTErpasIblK, TeHeyine KesTipiiareH. AJbIHFaH TEHJEYIiH SIpo-
coiHa apHaiibl Gyuknusa 6ap. CoHpali-aK, KbUIYOTKI3TIMTIK TEHIEYIHIH MeTTiK ecebiHIH XKYKTEIreH KO-
CBUIFBIIIBIHBIH DeuIex TYBIHIBICHI peTlHlH IIEKTIK )Kaf‘,ﬂa.ﬁﬂapbl 3epTTeﬂ,ﬂi. MHTeraﬂﬂbIK Te}meyﬂi}x Ie-
H_IylHlH 6ap 60.Hy])I MEH 2KaJIFbI3IbIFbI 6aCTaHKBI H_IeTTiK eCeHTiH 2KYKTeJI'eH KOCBL/IFbIIIbIH/Iatr'bl 66JIH_IGK

TYBIHBIHBIH, peTiHe OailIaHbICThI €KEH T KOPCEeTIITeH.
Kiam ce3dep: XKyKTeJreH TeHjey, OOJIIIeK TYbIHIbI, KbIIYOTKI3rimTik Teraeyi, Boiapreppa nHTErpasiIbIK,
TeHieyi, apHailbl DOYHKIIHSI.
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M.T. Kocmaxkosa, C.A. Uckakos, JI.ZK. Kacsimora

K pemenuio nByMepHOii TpPaHUYHOI 3a/la9u
TeIJIOIIPOBOAHOCTA B BBIPOXKJAIOIIeiicsa 00JIacTn

B crarne paccmorpena kpaeBasi 3a7ada 11t APOOHO-HATPY2KEHHOTO YPABHEHHST TEIIOMPOBOIHOCTH B KJIAC-
ce HenpepbIBHbIX GyHKImi. MeToibl ucciieoBanus 6a3upyroTcsl Ha IMOAXOE K HCCJIEJOBAHUIO KPAEBBIX
3a/av, OCHOBAHHOM Ha WX CBEJIEHWU K MHTErpajbHbIM ypaBHeHusiM. [locTaBiieHHast KpaeBasl 3aja4a CBeJe-
Ha K WHTErPAJIHHOMY ypaBHEHHIO BosbTeppa BTOpOro poma obpaineHuneM nuddepeHnaibHoi 9actu. S apo
[TOJIy Y€HHOI'0 yPABHEHUsI COJIEPXKUT CllennaibHy0 MyHKIMO. TakKe IPOBEIEHO HCCIIe0BAHNE [IPEEeIbHBIX
CJIydaeB HOPsIIKa IPOOHOMN IIPON3BO/IHOM CIAaraeMoro ¢ Harpy3Koil B ypaBHEHHIH TEIJIOIIPOBOIHOCTH KPAaeBO
3asaun. [lokazaHo, 9TO CyIIEeCTBOBAHKE U €IUHCTBEHHOCTH PEIIEHUs MHTEIPAJIbLHOTO YPABHEHHS 3aBUCST OT
opsiJika JAPOOHOI IPOU3BO/IHOIM B HAIPYKEHHOM CJIAra€MOM HCXOJHOW KPAaeBOil 3a/1avu.

Karoweswie caosa: HArpYKEHHOE ypaBHEHUe, pOo0OHasi IPON3BO/IHAS, YPABHEHNE TEIJIONPOBOJHOCTH, NHTE-
rpajbHOE ypaBHeHme BosibTeppa, crenuanbHast pyHKIIHS.
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Technology for restoring functional dependencies
to determine reliability parameters

The problem of determining the properties of the object by analyzing the numerical and qualitative
characteristics of a discrete sample is considered. A method has been developed to determine the probability
of trouble-free operation of electronic systems for the case if the interpolation fields are different between
several interpolation nodes. A method has been developed to determine the probability of trouble-free
operation if the interpolation polynomial is the same for the entire interpolation domain. It is shown that
local interpolation methods give more accurate results, in contrast to global interpolation methods. It is
shown that in the case of global interpolation it is possible to determine the value of the function outside
the given values by extrapolation methods, which makes it possible to predict the probability of failure.
It is shown that the use of approximation methods to determine the probability of trouble-free operation
reduces the error of the second kind. A method for analyzing the qualitative characteristics of functional
dependences has been developed, which allows us to choose the optimal interpolation polynomial. With
sufficient statistics, using the criteria of consent, it is possible to build mathematical models for the analysis
of failure statistics of electronic equipment. Provided that the volume of statistics is not large, such statisti-
cs may not be sufficient and the application of consent criteria will lead to unsatisfactory results. Another
approach is to use an approximation method that is applied to statistical material that was collected
during testing or controlled operation. In this regard, it is extremely important to develop a method for
determining the reliability of electronic systems in case of insufficiency of the collected statistics of failures
of electronic equipment.

Keywords: approximation, interpolation, reliability of electronic equipment, statistical processing, restorati-
on of functional dependence, estimation of reliability indicators, small sample, sufficiency of statistics.

Introduction

In order to increase the reliability and noise immunity of electronic systems operated in space and aviation,
it is necessary to conduct numerical tests with high accuracy.

If it was possible to collect sufficient statistics, then using the criteria of agreement there is an opportunity
to choose a mathematical apparatus with which you can analyze this series. But if the volume of statistics
is not large, then such statistics may not be sufficient and the application of the consent criteria will lead to
unsatisfactory results. The existing methods of studying the reliability of electronic equipment do not fully meet
the requirements of practice and the level of production technology. It is explained by the fact that the values
of real reliability indicators differ significantly from the forecast estimates, as the sufficiency of the collected
statistics of failures is not taken into account.

Insufficient statistics make it impossible to apply the criteria of consent for the choice of the law of distri-
bution of work to failure due to the large error of the second kind, with which the selected laws of distribution
will align the collected statistics. Therefore, it is necessary to develop a method of data processing to study and
solve this problem.

All of the above-mentioned leads to the need to solve the problem of restoring functional dependencies.
Therefore, the problem of restoring functional dependences on a discrete experimentally obtained sample by
local and global interpolation methods is relevant. Electronic systems are known to be highly reliable, and failure
statistics are very difficult to collect. In the well-known publications of X. Changhui, R. Xiaoping, S. Xianfeng,
G. Jingxiang on the study of reliability in [1] the modeling of the studied object by Kalman filtering method is
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E-mail: sehorov@gmail.com
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offered. But in the case of modeling the behavior of electronic systems, this method can lead to large errors in
the simulation results. This is due to the fact that the technology of manufacturing electronic systems is very
complex. In the electronic system there are a lot of complex processes, which are very difficult or impossible to
take into account. For example, the software environment for modeling the operation of electronic circuits NI
Multisim, in the case of building complex electronic circuits may not correctly model the processes occurring
in electronic equipment. According to its properties, the Kalman filter will return more accurate results only
if the data are normal in the distribution. But research data will not necessarily have a normal distribution.
Therefore, the method described in [1] for modeling the behavior of electronic systems should be used only in
the case of justification of the use of normal distribution.

Z. Zhengcheng, B. Narayanaswamy in [2] suggest determining of the probability of failure-free operation of
the system using signatures, which are a function, the arguments of which are the operating time for failure.
But the suggested method does not answer the question of the sufficiency of the collected statistics. H. Zhipeng,
G. Jianbin, Z. Shengkui in [3] used a combination of Bayesian methods with system state vectors to determine
the reliability of the system to reduce the number of calculations and the amount of statistics. But to determine
the probability of failure, it cannot be recommended because the study [3] does not contain the calculation
of the error that occurs if selected for data processing of a mathematical apparatus. F. Hailin, D. Jieyu in [4]
suggests determining of the probability of failure-free operation of the system using signatures, as well as in [2],
but the method suggested in [4] is suitable for solving problems of diagnosing and identifying problematic places
during system operation.

S. Xujun, L. Xuezhi in [5] proposed on the basis of modeling of discrete events algorithm of modeling of
reliability of system of a step-by-step mission with several states. The program algorithm includes the Markov
process. But the degradation process that takes place in the system will not necessarily be Markov. Therefore,
the reliability model for different types of systems will be individual.

Groezinger, A. Zimmermann in their research [6] tested the reliability of LEDs in the laboratory. A correlati-
on analysis was used to process the test results. The presence of a correlation indicates the relationship between
the data being analyzed, but does not determine the mathematical apparatus by which the experimental data
can be processed. Of particular interest is the publication of X. Zhao, S. Wang, L. Sun [7] which suggested a
method of planning tests for the reliability of finished products using Markov circles. However, in the production
of complex electronic equipment, where it is necessary to control the parameters of the product at each stage
of the technological cycle of production, this method is not suitable.

D. Zhou, H. Wang, F. Blaabjerg in [8] used the Weibull distribution to evaluate the reliability of mains
electric filters and voltage converters and did not sufficiently substantiate their choice. For this reason, it is not
known with what error the Weibull distribution will align the experimental data. In this case, it is necessary
to check the plausibility of hypotheses and in case of insufficient statistics to solve the problem of restoring
functional dependencies.

Kostanovsky V.V., Machalin I.A., Kozachuk O.D., Terentyeva I.A. in [9] have built a generalized probabi-
listic physical model of reliability of a two-level active phased array. Exponential and diffusion nonmonotonic
distribution were used in [9] as models of failures of electronic components and transmission channels. However,
[10] showed that the exponential and diffusion nonmonotonic distribution has no advantages along with other
distributions with similar characteristics. Therefore, the use of exponential and diffusion nonmonotonic distri-
bution in the study [9] is not justified.

Analysis of the literature [1-10] shows that the problem of restoring functional dependences on a discrete
experimentally obtained sample by local and global interpolation methods is relevant.

Problem setting. It is necessary to develop a method of restoration of functional dependences in the
conditions of insufficiency of statistical data by means of technologies of approximation and interpolation.

In order to achieve this goal, the following tasks were set:

— to investigate the existing methods of approximation;

— on the basis of research to develop a method for determining the probability of failure-free operation in
case of insufficiency of statistics on a discrete experimentally obtained sample.

Material and method
At the first stage of data processing it is necessary to determine the sufficiency of statistics. This should be
done according to the method described in [10]. If the statistics are insufficient, there are two options for solving

this problem: 1. Continue to collect failure statistics, in the case of actual observations, or simulate more failures.
2. Restoration of functional dependences by approximation methods. Suppose the values of some function at
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given points are known. You need to find intermediate values of this function, according to the approximation
method. This is a task to restore the function. In addition, when performing calculations, it is convenient to
replace complex functions with algebraic polynomials or other elementary functions, which are quite simple to
calculate (problems on the approximation of the function) [11].

The formulation of the interpolation problem is as follows. In the interval [a,b] the points x;, i = 0,1,..., N
are given; a < 2; < b and the value of the unknown function at these points f;,i = 0,1, ..., N. We need to find
function F(z) that takes the same values of f; at z;. In this case, we look for F'(z) only on the segment [a, b]. If
it is necessary to find a function outside the segment, then this is an extrapolation problem.

The problem has many solutions, because through the given points (x;, f;), i = 0,1, ..., N, it is possible to
draw infinitely many curves, each of which will be a graph of the function for which all interpolation conditions
are fulfilled. The case of approximation of a function by polynomials is important for practice, [11]

F(z) = ag + a1 + agz? + ... + apa™.

All interpolation methods can be divided into local and global. In the case of local interpolation, a separate
polynomial is constructed on each interval [z;-1,;]. In the case of global interpolation, a single polynomial is
found in the entire interval [a, b].

On each segment [z;-1,x;] the interpolation polynomial is equal to a constant, namely the left or right value
of the function.

For the left piecewise linear interpolation it is:f(x) = fi_1, if i.e. ;-1 < x < x; [11, 12]

fo, o< <y

, 1<z <z
F(z) = fi, @ 2

IN-1, aN-1 Sz < zN.
For the right piecewise linear interpolation it is: F(z) = f; if 2,1 < z < z;, l.e. [11, 12].

f0,$0<x§$1

, T1 <x <
F(w): f1 Z1 x Z2

fv-1, zv—1 <z < 2N,

Thus, the interpolation conditions are fulfilled. The constructed function is discontinuous, which limits its
application.

The principle of piecewise-linear [11, 12| interpolation is as follows. At each interval [z;_1, z;], the function is
linear F;(z) = k;xz+1;. The values of the coefficients are from the fulfillment of the interpolation conditions at the
ends of the segment: f;(z;—1) = fi—1, fi(x;) = fi . We get a system of equations: k;z; +1; = f;—1, where we find:
Jizfi ;}71 r+ fi —kix;

i Li—1

k; = Jizfina , li = fi — k;x; from. Therefore, the function F(z) can be written as: F'(z) =

Ti—Ti—1

if ;1 << x; that is:

1— fo
ux"*‘fo—koﬂﬁo, zo <7 < 11
Tr1 — Xo
2—f1
u$+f1—k1331,331§$1<$2
F(z)=4 22—

N — -1
2+ fy_1 —kn—1ZN—1, TNo1 S 2N < TN
TN —TN-1

When using linear interpolation, you must first determine the interval in which the value of x falls, and then
substitute it into the formula. The final function will be continuous, but the original derivative will be absent
in each interpolation node. The error of such interpolation will be less than in the case of piecewise constant
interpolation.

When interpolating functions, the condition of equality of values of interpolation polynomial and this functi-
on in interpolation nodes was used. If the original data are obtained as a result of experimental measurements,
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the requirement of exact coincidence, as a rule, does not apply because the data are not obtained accurately. In
these cases, only an approximate fulfillment of the interpolation conditions can be required |F'(x;) — f(x;))| < €.
This condition means that the interpolating function F (x) does not pass exactly through given points, but in
some of their margins.

In this case, use a selection of empirical functions. The construction of an empirical function consists of
two stages: the selection of the form of this function ¢(x,ag,as,...,a,), which contains unknown parameters
ag, A, .-, Am,, and the determination of the best in some sense arguments of this function. The type of function
is sometimes known for physical reasons (for an elastic medium, the relationship between stress and strain). Or
the type of function is chosen for geometric reasons: the experimental points are plotted on a graph and the
general form of the dependence is roughly guessed by comparing the obtained curve with the graphs of known
functions. Success here is largely determined by the experience and intuition of the researcher.

The case of approximation of a function by polynomials is important for practice [11-15], i.e.

F(x) = ap + a1 + a22? + ... + a,a™.

Once the type of empirical dependence is selected, the degree of proximity to the empirical data is determined
using a minimum of the sum of the squares of the deviations of the calculated and experimental data.

Suppose that for the initial dataz;, f;,i = 1,..., N (numbering is better to start with one), the type of
empirical dependence is chosen: ¢(z,ap, a1, ..., a;,) with unknown coefficients ag, a1, ..., a,,. We write the sum
of the squares of the deviations between the calculated by empirical formula and given experimental data:

N
S(ag, a1y ey Q) = Z((b(m,ao,al, ey @) — )2 (1)

i=1

We will find arguments aq, a1, ..., &, from the condition of a minimum of function S(ag, a1, ..., @y, ). This is the
least squares method (LSM).

It is known that at the point of minimum all partial derivatives from S to ag,as,...,a,, are equal to zero
[11, 15]:

dsS ds ds
—=0,—=0,...,— =0.
dag " day " dag,

Consider the application of the LSM for a particular case, widely used in practice. As an empirical function,
consider a polynomial [11, 15]
() = ap + a1 + agx® + ... + a

Formula (1) for determining the sum of squares of deviations will take the form [11, 15]:

N
S(CLOa Ay .-y am) = Z(ao + a1z + a2:£2 + ...+ am,xm - fz)2
=1

Calculate the derivatives [11, 15]:

s ZN

dag H(ao +a1w +apa’ + .+ apa™ — fi)

s a

7:25 24 ama™ — f)a
day Z=1(a0+a1x+a2x +ooFama™ — fi)x

ds N
_ 2 )
da. =2 g (ap + a1z + asz” + ... + ama™ — fi)z".

i=1

Equating these expressions to zero and collecting the coefficients for the unknowns , we obtain a system of linear
equations [11, 15]:
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N N N N
Na0+alin+QQZIZZ+...+CLmZxT = Zfi
i=1 i=1 i=1 i=1

N N N N N
2 3 1
aog xi—&—alg xi—i—agg xi—&—...—i—amg x;’” :E i fi
i=1 i=1 i=1 i=1 i=1

N N N N N
1 2 2
ao E "+ aq E x;’” + as E x;’” + .. +an E ;™ = E " fi.
i=1 i=1 i=1 i=1 i=1

This system of equations is called normal and is used to find the coefficients ag, a1, ..ay,-
As a rule, several empirical dependencies are chosen. The LSM finds the coefficients of these dependences
and among them find the best for the minimum amount of deviations.

Results of the research of approximation methods

Selection of empirical functions. The specified values of the failure function of the electronic system (Table 1).
Table. 1 shows that N = 6. You need to find empirical dependences: linear pl = ag + a;x, quadratic

p2 = ag + a1x + a»x?, hyperbolic p3 = LLOE by the LSM and choose among them the best for the smallest sum
x

of squares of deviations.
The system of normal equations for linear dependence:

N

N
Na0+alz$i :Zfi
i=1

i=1
N N N
2
ag E x; + a E x; = E Zifi
i=1 i=1 =1

Table 1

The number of failures and the corresponding probabilities

Parameters used in the calculations Zo 1 T2 T3 T4 s
z (number of failures) 1 2 3 4 8 10
f (statistical probability of failure-free operation) | 0,1 | 0,15 | 0,2 | 0,3 | 0,45 | 0,7

Given that N = 6, and solving a system of linear equations, we obtain ag = —0,25;al = 175. Given that N = 6,

and solving a system of linear equations, we obtain . Thus, the linear dependence has the form pl = —0,25+175x
(Fig. 1).
6
Calculate the sum of the squares of the deviations: s; = Y (ag + a1z — f;)* = 2,63. Consider the quadratic
i=0

dependence. The system of normal equations has the form:
6 6 6
6ag +alzxi—|—a22x? = Zfi
i=1 i=1 i=1
6 6 6 6
aozgci +alzx? + as fo’ = Z:mfz
i=1 i=1 i=1 i=1
6 6 6 6
aOfo —|—alzzf —|—a22x? = Za:ffz
i=1 i=1 i=1 i=1

Solving simultaneous linear algebraic equations we obtainag = —0,101;a; = 14,982;a5 = 0,162. Thus, the
quadratic dependence has the form: p2 = —0,101 + 14, 982z + 0, 16222. Calculate the sum of the squares of the
6

deviations: so = Y (ag + a1x + aza? — f;)? = 2,234.
i=0
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Figure 1. Approximation of experimental data by quadratic dependence: f is the experimental data,
pl - approximation by linear dependence, p2 - approximation by quadratic dependence.

Let’s make a system of normal equations for hyperbolic dependence. According to the LSM we find the sum

N a
of squares of deviations: S5 = Y (ag + bt fi)?. We make a system of normal equations:
i=0 Z;

s 0 ai
dag 2% E_ <ao 2 [ z) 0

T4

ds 6 ai 1
d%:%S:Z(“OU‘ﬁ)m:O'

Solving the equations gives
ap =1,942;al1 = 0,571.

The sum of deviations squares S3 = —46,687. Thus, the results of the calculations by the LSM show that
it is best to approximate the curve by the quadratic dependence (Fig. 1).

As can be seen from Fig. 1 approximating curves pl and p2 in appearance, in this case, it is very difficult
to distinguish and very difficult to see which curve is better to approximate the experimental data. Therefore,
it is very important to calculate the sum of the squares of the deviations.

Conclusions

As can be seen from Fig. 1 approximating curves describe a statistical series consisting of experimental data
with some error. This error is characterized by the least squares check. In Fig. 1 it is difficult to see. In order to
obtain more accurate results, it is necessary to use approximating curves of higher order, or local interpolation
methods. The peculiarity of this method is that in the conditions of insufficiency of the collected statistics the
probability of making an error of the second kind decreases due to the possibility to choose an approximating
curve that can align the statistical series with the required accuracy. Analyzing the results of the research, it
can be stated that the suggested method allows to effectively calculate the parameters of reliability in case of
insufficiency of the collected statistics of failures.

The advantages of the suggested method are the following ones:

— it is possible to calculate the value of a function for any argument in short time with the required accuracy.

The disadvantages are:

— insufficient clarity in terms of the behavior of functional dependence;

— the analytical formula is often unknown;

— in some cases, the known functional dependence is too tedious for easy use in practice.
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But it should be noted that the disadvantages of the suggested method can be offset by the use of modern
software and sufficiently powerful computer systems.

Due to the advent of computing systems that can handle multiple threads simultaneously, the prospect of
developing approximation methods is the development of new methods for approximating numerical information
with a multithreaded structure to solve problems in mathematical physics, such as grids, finite elements.
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B.I1. Ksacuukos, C.B. Eropos, T.1O. IlIkBapuurikast

CeHiMIi/IIK mapaMeTpJepiH aHbIKTaY YHOIH (PYHKINOHAJIIBIK
TOYEJILILIIKTI KAJNbIHA KeJITIPYy TE€XHOJIOTHUSICHI

JluckperTi ipikTey GOMBIHINA CAH/IBIK, YKOHE CAlAJIBIK, CUITATTAMAaJIAP/IbI TAIIay APKbLIbI O0bEKTIHIH KACHeT-
TepiH aHBIKTAy Moceseci KapacThIpbLIabl. MHTepnonsnusanbiy GipHerte TYHiHAep] apacbiHIAFbI HHTEPIIOJI-
[USJIBIK, KOIIMYIIIEJIep 9p TYpJii OOJIFaH Kariai/ia 3JIeKTPOHIBI KYHeep/IiH, aKayChl3 »KYMbIC iCTey BIKTH-
MAaJIIBIFBIH AHBIKTAY OIiCi Kacayabl. VHTEpHoisanus MOJUHOMBI WHTEPIIOSAIUSHBIH, OVKIT ayJaHbl VIIiH
Gipmeit GosraH Karmaiiza, akaychbl3 XKYMbBIC BIKTUMAJIIBIFBIH aHBIKTAY ofici »kacamel. 2KeprigikTi mHTEp-
MOJIATUS dicTepi KahaHIBIK UHTEPIIOJIAIUS 9iCTepiHe KaparaH/ia JIoJIipeK HOTHKe OepeTiHi KepceTiareH.
FanaMmapik uHTEpHONSAIINS KAFTAWBIH/IA SKCTPAIIOJISAINS OiCTePIMEeH OepLIreH MOHIEPAEH THIC (DYHKIIHSI-
HBIH MOHIH aHBIKTayFa O0IATHIHIBIFBI KOPCETLITeH, OYJT aKayChI3 XKYMBIC BIKTUMAJIIBIFBIH O0JIZKAY MYMKIiH/Ti-
rin 6epei. AKayChl3 >KYMBIC BIKTUMAJIIBIFBIH aHBIKTAY VIIIiH AIIITPOKCUMAIUSIIIAY 9JICTEPIH KOJIAHY eKiHIIi
TUIITET] KATEJIIKTIH TOMEHEYiHe 9KeJeTiHIir KopceTiireH. OyHKIIMOHAIIBI TOYEJIITIKTEP/IiH, CATIAJIbIK, CH-
nmaTTaMajapblH TaJaay SIiCi Kacaymapl, Oy OHTANIBI HHTEPIOJIAINIBIK KOIMYIIEH] TaHIayFa MYMKIHIIK
Oepesi. 2KeTKiiKTI craTucTUKaMeH KeJliciM KpUTepHuilJiepiH KOJIJaHa OTBIPBIM, 3JEKTPOH/bI KA/ IBIKTHIH
iCTeH TIBIFY CTATUCTUKACHIH TAJIIAyIbIH MaTeMATHKAJBIK MOJEIbIEpiH KypyFa 60maapl. Erep cratucruka
KeJjieMi yiIKeH 6oJsiMaca, OHJ/Ia MYHIail CTATHCTHKA YKETKLTKCI3 OOJIybl MYMKIH KoHEe KeJiciM KpuTrepuiiie-
piH KOJIJaHy KaHaraTTaHAPJIBIKCHI3 HOTHUXKejiepre oKesedi. Tarbl Oip Tociyi — Tecrisiey Ke3iHJie >KUHAJFAH
CTaTUCTUKAJIBIK MaTepuaJifa HeMece OAKBIIAHATHIH TaliIaaHyIafbl MATEPUAJIFA KOIAHBLIATHIH ATPOK-
cuManusiiay omicin Kosmany. OcbiFa 6aiIaHBICTBI 3JIEKTPOHALI *KAOIBIKTBIH, iICTEH IIBIFY CTATHCTUKACHI
JKETKLTIKCI3 O0oJIFaH »Kargaiaa 3JIeKTPOHIbI XKy HeIep i, CEHIMIIITH aHbIKTay 9/IICIH YKacay eTe MaHbI3/IbI.

Kiam cesdep: 31eKTpOHIBI 2KaO IBIKTHIH, }KAKBIHIAY b, HHTEPIIOJISIIIASICHI, CEHIMILTIT], CTATUCTUKAJIBIK, OHJIEY,
GbYHKITMOHAJIIB TOYEIIUTKTI KAJIIBIHA KEITIPY, CeHIMIITIK KOpCeTKInTepin baraiay, MarbH ipikTemMe, cTa-
TUCTUKAHBIH YKETKIJTIKTLJIIr.

B.I1. Ksacuukos, C.B. Eropos, T.}O. IlIkBapuurikast

Texnosioruss BocctaHoBJeHUS PYHKINOHAJIBHBIX 3aBUCUMOCTEM
JJIsI oIIpeJieJIeHnsl IMapaMeTPOB HAIE2KHOCTHI

Paccmorpena 3agada ompesmesenust CBOACTB 00ObEKTa MyTEM aHAJIM3a YUCIOBBIX M KAYECTBEHHBIX XapaK-
TEPUCTUK TI0 JUCKPETHON BbIOOpKe. PazpaboranH MeTos ompejiesieHusi BEPOATHOCTH 0OE30TKa3HOU pPabOThI
JIEKTPOHHBIX CUCTEM JIJIs CJIydasi, KOT/Ia WHTEPIOJISIIMOHHBIE IOJTMHOMBI MEXKTy HECKOJIBKUMU y3JIaMU UH-
TEPHOJIANNY Pa3IudIHbl. PazpaboTan MeTO T Onpe/iesieHns BEPOSTHOCTH 6€30TKA3HOM paboTh B CiIydae, KO-
I MHTEPIOJISIIUOHHBIM [TOJIMHOM Il BCell 06JIaCTH MHTEPIIOJIANNN OuHAKOBbIA. [TokazaHo, 4TO MeTOmbI
JIOKAJILHOM WHTEPITOJISIIIUN TaloT Oojiee TOYHBbIE PE3Y/IbTAThl B OTJIUYHE OT METOJOB TIJIODAJIBLHON WHTEp-
nossituu. [lokazano, 9To B ciaydae rirobabHON MHTEPIIOISIIMN €CTh BO3MOXKHOCTD OIPEIC/INTh 3HAUECHUE
dyHKIMHT 3a IpejesaMy 33/JaHHbIX 3HAYEHHI MEeTOIaMU SKCTPAIIOJISIIIN, 9TO JAeT BO3MOXKHOCTD IIPOIHO3H-
pOBaHUsI BEPOSITHOCTH Ge30TKa3HOM paboThl. [TokazaHo, YTO MCMOIB30BaHNE METO/OB ATITPOKCAMAIIUN JIJTsT
OIpEJIETICHUsT BEPOATHOCTU OE30TKA3HON PAbOTHI HPUBOMAUT K YMEHBIIEHHUIO OIMMMOKN BTOPOTO poma. Pas-
paboraH MeTOJI aHAJIU3a KAYECTBEHHBIX XaPAKTEPUCTHUK (DYHKIMOHAJIBHBIX 3aBUCHMOCTE, 9TO IIO3BOJISIET
BBIOMpPATh ONTUMAJIBHBIN WHTEPIIOISAIMOHHBIN TOJMHOM. [Ipu TOCTATOYHON CTATUCTUKE, C UCITOIB30BAHUEM
KPUTEPHUEB COTJIACHS], MOXKHO CTPOUTH MaTEMaTUIECKIE MOJIEIN AHAIN3A CTATUCTAKNA OTKA30B JIEKTPOHHOMN
anmaparypsl. [Ipu ycioBuu, 910 06beM CTATUCTUKYU HEOOJIBINOM, TaKas CTATUCTAKA MOXKET OKa3aThCsl HEJI0-
CTaTOYHOM, U IPUMEHEHNEe KPUTEPUEB COTVIACUS IPUBEIET K HEYIOBIETBOPUTEIbHBIM pe3ysibraraM. JIpyroit
[IOJIXOJI, COCTOUT B UCIIOJIL30BAHUU METO/IA AIIIPOKCUMAIIUN, KOTOPBINA IPUMEHSIETCS K CTATUCTHIECKOMY Ma-
TepuaJLy, KOTOPBIil Ob11 COBpaH BO BpeMsi UCHBITAHUN, UM HOAKOHTPOJILHOMN SKCIUIyaTauu. B cBs3u ¢ aTuM
KpaifHe BayKHO pa3paboTaTh METOJ, ONPE/IeICHHUs HAJEXKHOCTU JIEKTPOHHBIX CHCTEM B CJIydae HeI0CTaTOq-
HOCTU COOPAHHON CTATUCTUKHM OTKA30B 3JIEKTPOHHON almapaTypbl.

Karouesvie caosa: alnmipOKCUMAIHsL, UHTEPIOJANNS, HAAEXKHOCTD SJIEKTPOHHON aIlapaTyphbl, CTATUCTHYE-
ckasi 00paboTKa, BOCCTAHOBJIEHUE (DYHKIIMOHAJIBHON 3aBUCUMOCTH, OICHKA IOKa3aTeseil HaJEKHOCTH, Ma-
Jiasi BBIOOPKA, JOCTATOYHOCTD CTATACTHKH.
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On the existence of the resolvent and separability of a class
of the Korteweg-de Vriese type linear singular operators

Partial differential equations of the third order are the basis of mathematical models of many phenomena
and processes, such as the phenomenon of energy transfer of hydrolysis of adenosine triphosphate molecules
along protein molecules in the form of solitary waves, i.e. solitons, the process of transferring soil moisture in
the aeration zone, taking into account its movement against the moisture potential. In particular, this class
includes the nonlinear Korteweg-de Vries equation, which is the main equation of modern mathematical
physics. It is known that various problems have been studied for the Korteweg-de Vries equation and many
fundamental results obtained. In this paper, issues about the existence of a resolvent and separability
(maximum smoothness of solutions) of a class of linear singular operators of the Korteweg-de Vries type in
the case of an unbounded domain with strongly increasing coefficients are investigated.

Keywords: resolvent, Korteweg-de Vries type singular operator, separability.

1 Introduction

The solvability of boundary value problems for odd order differential equations, in particular, to the
Korteweg-de Vries equation is dealt with in a significant literature [1-9] and the papers cited there.

In contrast to these interesting papers, this article deals with the problem of the existence of a resolvent and
the separability of a class of linear singular operators of the Korteweg-de Vries type in the case of an unbounded
domain with strongly increasing coefficients.

Note that if the boundary regime operates sufficiently long, then due to the friction inherent in any real
physical system, the influence of the initial data weakens with time. Thus, we arrive at a problem without initial
conditions [10].

Therefore, taking this remark into account in the present work, we consider the differential operator

P3u 0

ou u
Lu+ Au = 8—y+R2(y)$+R1(y)%+Ro(y)u+Au (1)

initially defined on C§%.(Q), where Q = {(z,y) : =7 <z <, —00 <y < o0}, A > 0.
Cor is a set of infinitely differentiable functions satisfying the conditions:

u(—m,y) = uld (,y), i=0,1,2 (2)

and compactly supported with respect to the variable y.
Further assume that the coefficients Ry(y), R1(y), R2(y) satisfy the following conditions:
i) Ro(y) > 60) > 0, R1(y) > 61 > 0, —Ra(y) > 02 > 0 are continuous functions in R(—oo, +00);
ii) po = sup 1;‘;((3{)) < 00,1 = Sup 11211((?)) < 00, iy = Sup gi((gt’)) < 0.
ly—t|<1 ly—t|<1 ly—t|<1
The operator L + A\l admits closure in Ly(£2), which we also denote by L + AI.
Theorem 1. Let the condition i) be fulfilled. Then the operator L + AI is continuously invertible in Ly (€2)

for A > 0.

*Corresponding author.
E-mail: musahan_m@mail.ru
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Definition. We called the operator L is separable in uw € D(L) if the estimate

holds for u(z,y), where C is independent of u(z,y), || - ||2 is the norm of Lo (2).

Theorem 2. Let conditions i) - ii) be fulfilled. Then the operator L is separable.

Example. Let Ro(y) = |y| + 1, Ri(y) = el¥!, Ry(y) = —10- e, —00 < y < oo. It is easy to verify that all
the conditions of Theorem 2 are satisfied. Consequently, the operator L is separable, i.e.

3
1y 0"

X

O3y

ou
(y)@

9y

ou
mwFe| Rl < Oz, + )

L2 (2)

+‘R2

Ly (Q) La ()

1y QU

+€8x

+ 1yl + Dull o) < CULull 1, 0) + lull, @)
L2(92)

HlO-e

Hay

C'is a constant.

L2(Q) L2(Q)
2 Auxiliary lemmas and inequalities

Lemma 2.1. Let the condition i) be fulfilled and A > 0. Then the inequality

(L + A)ull ) = (0 + M) lJullpy @) (3)

holds for all uw € D(L), where dp > 0.
Proof. Let u € Cg%.(2) and consider the scalar product

ou Pu ou
<@ A= [ (G4 Ral0) 35 + Fal) 55 + (Ro(w) + Aju)udady =
0
ou Ju
/ —udzdy + /Rz udxdy + /R1 —udxdy + /(Ro( ) + Nudedy. (4)
o !

Since u € Cg5,;(£2) and (2) holds, then the following equalities:

ou ou u
/@udxdy = 0; /Rl(y)%udxdy =0; /Rg(y)@udxdy =0. (5)
Q Q Q

hold. Using the equality (5) from (4) we have

< (L+ X)u,u >= /(Ro(y) + Nuldxdy. (6)
O

From (6), using the Cauchy-Bunyakovsky inequality and the condition i), we obtain
H(L"')‘I)U”L @ = = (0o +A) ||UHL Q) (7)

for all u € C§% (). By virtue of the continuity of the norm, the last estimate holds for all u € D(L). Lemma
2.1 is proved.

Remark. Due to the realness of the coefficients of (1) the estimate (7) holds for complex-valued functions.
Consider the operator

(In,j + M)z = 2'(y) + (—in’ Ra j(y) + inR1 j(y) + Ro,;(y))2(y),

where Ry ;(y), R1,(y), Ro,;(y) are bounded periodic functions of the same period A; = (j — 1,5+ 1), j =0,
+1,+2, 2(y) € CF°(R), 2(y) = uly) +(y).

Lemma 2.2. Let the condition i) be fulfilled. Then the operator (I, ; +AI) considered on C§°(R) is a closable
operator in Lo(R).

Proof. Let u, € C§°(R) and uy, 2—(>R) 0, (ln; + Au,, — L 19 If you use the operator (I,, ; + AI)* formally

associated with the operator (I, ; + AI), then for arbitrary function w € C§°(R)

2(
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< (ln,j + )\I)un,w >=< Unp,, (ln,j —+ AI)*QJ >

where (I, ; + M )*w = —w' + (in?’RgJ(y) —inRy ;(y) + Ro;(y))Y = 0.
Hence
<Yw>=<0,(ly; +A)'w>=0

Consequently, < 9¥,w >=0 for any w € C§°(R) and it means ¥ = 0. Lemma 2.2 is proved.
Lemma 2.3. Let the condition i) be fulfilled. Then the estimate

[Un.g + AD)zlly = (60 + A) [|2]l, (8)

holds for all z(y) € D(l,, ; + AI), || - ||2 is the norm of Ly(R).
Proof. Let z(y) € C§°(R) and z(y) = u(y) + i9(y). Consider the scalar product

o0

<(lpj+ M)z, 2z >= / (2" + (=in® Ry j(y) + inR1 ;(y) + Ro;(y) + \)z)zdy =

— 00

= [ #wewiy + / T (CinPRa(y) + inRuy(y) + Roy(y) + N|zPdy =

=il [ Wy [ it Rey)+ iR @)l + [ (Ray() + )l o)

Hence, using the properties of complex numbers, we have
< g+ A2z > 2| [ (Rosly) + NPyl

Since Ry ;(y) does not change the sign, then

oo

| < (L + ADu > | > / [(Ro;(y) + N)l|=[%dy.

— 00

By virtue of condition i) and using the Cauchy-Bunyakovsky inequality from the latter inequality, we have
[(n g+ AD)zlly = (80 + A) [|2]l -

Lemma 2.3 is proved.
Lemma 2.4. Let the condition i) be fulfilled.Then the operator (,, ; + AI) has a continuous inverse operator
(In,; + AI)~! defined on the whole Ly(R).
Proof. By the estimate (8) it suffices to show that the range is dense in Ly (R). Let’s assume that the range
is not dense in Lo(R). Then there is an element ¥ € Ly(R) such that < (I, ; + A)u, ¥ >= 0 for all u € D(l,,;).
This means that
(g + AD)*™0 =~ + (in* Rayy (y) — inRa i (y) + Ro.;(y))0 = (10)

in terms of distribution theory. By the periodicity of functions Ry (y), R1(y), R (y), we have that (in®Rs ;(y) —
—inR ;(y) + Ro,j(y))9 € Lao(R). From this and from (10) it follows that ¥ € W (R), where W3 (R) is the
Sobolev space. The general theory of the embedding theorems implies that

lim J(y) = 0. (11)

ly|—o0
Now, using the equality (11) and the arguments used in the proof of the estimate (9), we obtain that
[(n,j + AL, = 6o 9] - (12)

From estimates (12) and (10) it follows that ¢ = 0. Lemma 2.4 is proved.
Let {p;}52_ € C5°(R) is a set of such functions that ¢;(y) > 0, suppp; C A;(j € Z), > go?(y) =1.

Jj=—00
Here we note immediately that any point y € R can belong to no more than three segments from the system
of segments {suppy,} [11,12].
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Assume that
o0

Kxf= > ¢i)n;+A)"0;f,

j=—o00

o0

Baf= Y @)y + A of, fECE(R), A= 0.

Jj=—00
It is easy to verify that
(bn + ADEAS = [+ @) Ing + M) i f, (13)
J
where
(ln + M)z = —2'(y) + (=in’ Ra(y) + inRi(y) + Ro(y))z, z € D(ly).

Lemma 2.5. Let the condition i) be fulfilled. Then there is a number \g > 0 such that || By||,_,, < 1 for all
A > Ao

Proof. Let f € C§°(R). Only functions ¢;_1, ¢;, ¢;j+1 are nonzero in the interval A;(j € Z) , consequently:

j+1

||Bxfuim>=/ S )y APl < S [1'Y s+ A0 1Py

— ]——OO J_—OOA k= j 1

Hence, using the obvious inequality (a + b+ ¢)? < 3(a® + b? + %) and estimate (8), we have:

00 Jj+1 00
_ _ 2
IBA oy < D / | Y Gl +AD o f1Pdy <9 Y (9 +AD T i Il
j=—oox, k=il j=—o00

<9 Z (| (ln.g + /\I)fleinQ(R) <9-c Z | ln.j + /\1)71||12(RHL2(R) : H‘F’jf”iz(m <

j=—o00 Jj=—00

9-¢c 5
< - —
(60 +A)? /_ ZS@J 1y =, +>\) 2

This implies that
9.-c
HB>\HL2(R)~>L2(R) < (50 ¥ )\)2' (14)

From (14) it follows that it is easy to find a number Ao > 0, such that A > Ao, [|Ballf,
2.5 is proved.
Now consider the operator

R)—Ly(R) < 1. Lemma

(In + M)z = 2/ (y) + (—in®Ra(y) + inR1(y) + Ro(y))z(y),

where 2(y) = u(y) + i0(y), 2(y) € C&(R), (R = (~00,00)).
Lemma 2.6. Let the condition i) be fulfilled. Then the estimate

[(In + A1)z, > (80 + A) [|2], - (15)

holds for all z € D(l,,).
Proof. We obtain the proof of Lemma 2.3 by reproducing the computations and argument used in Lemma
2.6.
Lemma 2.7. Let the condition i) be fulfilled. Then the operator I,, + Al for A > Ag is boundedly invertible
and the equality
(In + M7t = K\(I — By) ™. (16)

holds for the inverse operator (I,, + AI)~1
The proof of Lemma 2.7 follows from the representations (13), (15) and Lemma 2.5
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8 On the existence of the resolvent. Proof of Theorem 1

Lemma 2.7 implies that
k

u(z,y) = Y (n+ M) fuly)e™ (17)

n=—=k
is the solution to the problem

(L + AI)uk(mvy) = fk(xay)a
ufj)(—ﬂ',y) = ug) (7T7y)?i = 07 1a 2

k
where fi(z,) Lz—(>R)f(x,y), fe(@y) = X faly) - e, 2 = =1, (I, + \X)~! is the inverse operator to the
n=—=k

operator [, + A\I. Using the inequality (3), we obtain

(o)l < Gy i)l (13)

Since fi(z,y) L2 f(z,y), then from (18) we find that
1
[ue = umlly < kN 1fk = fmlly = 0, k,m — oo.

Hence, by the completeness of Ly(£2) , it follows that there exist a unique function u € Lo(€2) such that

ug(z,y) = u(z,y) as k — oco. (19)
(17) and (19) imply that
w(@,y) = (L+ M) f(zy) = D (la+ A" faly)e™ (20)
is a strong solution for:
(L+X)u=f, (21)

for any f € Lo(Q).
Let us recall the definition of a strong solution. The function u € L3(2) is called a strong solution of the
problem (21)-(22), if there exists a {u}32; C C5%(£2) such that

lue = ullp, @) = 0, (L + ADuk — fll1, @) — 0 as k — oo.

Now, it is not difficult to verify that the formula (20) is the inverse operator to the closed operator L + AI.
Lemma 2.8. [13]. Let the operator L + Aol (A9 > 0) is boundedly invertible in Ly(€2) and the estimate
(L + Aullp, ) = llullp, @) w € D(L+ AI) holds for A € [0, Ao]. Then the operator L : Ly(£2) — L2(£2) is also
boundedly invertible.
This and Lemma 2.1 implies that Theorem 1 holds for all A > 0. Theorem 1 is completely proved.

4 On the separability of the operator

First, we give the lemmas that reduce the question of separability of an operator with unbounded coefficients
to the case of an operator with periodic coeflicients.

Lemma 2.9. Let z(y) € D(l, + AI) and z(y) = u(y) + id(y), then in3Ra(y)z(y) € L2(R) if and only if
n3Ra(y)u(y) € La(R) and n®Ra(y)I(y) € La(R).

Proof. Necessity. Let in®Ra(y)z(y) € L2(R). Then

iR = [l Rew)e)y = [ B w1y =

= / S R3(y)|(Jul? + 912 dy = |[n*Ra(y)ul|s + ||n*Ra(y)9||3

— 00
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It follows that n3Rs(y)u(y) € La2(R) and n®Ra(y)9(y) € La(R).
Sufficiency. Let n®Ra(y)u(y) € La(R) and n®Ra(y)I(y) € La(R). Then

in® Re(w)zw)l; = [n* Batw)ull; + n* Ro(w)]

Hence in®Ry(y)z(y) € Lo(R). Lemma is proved.
Remark. This Lemma is also true for in® Ry (y)z(y).
By virtue of this Lemma, we consider the operator

(Inj + ADu=u'(y) + (=in®Ra j(y) + inRy ;(y) + Ro(y) + Nu(y),

in the space C§°(R) the set of infinitely differentiable, finite, and real-valued functions, where Ry ;(y), R1,;(y),
Ry ;(y) are bounded periodic coefficients of the same period A; = (j — 1,5 + 1), j = £0,£1,£2...
Lemma 2.10. Let the condition i) be fulfilled. Then the estimates:

[(n.g + ADu()lly = Ro(y;) llully,  n=0,+1,42... (23)
where Ro(y;) = min Ro ;(y);
YEA;
[(Un.g + ADu()ly = [n[Ry(@5) ully, 7 =0,+£1,+2.. (24)
where R1(y;) = min Ry ;(y);
YEA;
(g + ADu@)lly > Inf Ra(@5) ull,  n=0,£1,%2... (25)
where Ry(y;) = min |Ry ;(y)|, || - |2 is the norm of Ly(R).
YyEA;

Proof. Let u(y) € C5°(R), . Given that ffooo o' (y)u(u)dy = 0 and reproducing the computations used in the
proof of Lemma 2.1, we have:

| < (lnj + M)u,u> [ = |/ (—in®Ra ;(y) + inRy ;(y) + Ro;(y) + Nu’dyl, (26)
From estimate (26) we find that
< g+ M > 2] [ (Roy(o) + Nlufdy| = min Rofy) ]}, (21)
—0oo yes;

Using the Cauchy-Bunyakovsky inequality, we obtain from (27) that
1ln.g + ADully = Ro(y;) llull; (28)
where Ry(y;) = min Ry(y).
YyEA;
The proof of the inequality (28) follows from the inequality (22) of lemma 2.10.
Further, from the inequality (26) we find

oo

| < (ln; + ADu,u>|>|— z/ (n3R27j(y) + an)j(y))UQdy\. (29)

—0o0
Here we used the properties of complex numbers. From (29), by virtue of the condition i), we obtain the following
inequalities:

o
< g+ A > 2 | [ s )aldy) = nlBa(a5) .

| < (Inj +ADu,u> [ > I/ (=" Ra 3 (y))lulPdy| = [n*| R2(55)| |[ull;,

where Ry (y;) = min Ry ;(y), R2(y;) = min |Ry ;(y)| . From these inequalities and using the Cauchy-Bunyakovsky
YyEA; YEA;
inequality, we find that:
1ln.g + ADully = || Ry () [ullz 5

ltng + ADully > n® [ Re ()] lull -

Lemma 2.10 is proved.
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Lemma 2.11. Let the condition i) be fulfilled and A > Xy, @ = 0,1,2,3, p(y) defined on R continuous
function. Then the estimate

[ @)lm]* (2 "‘)‘I)_IHZ(R)—wQ(R)S SUPHP )In|*p; (L j+)‘I)_1‘|ig(Aj)—>L2(A_7)' (30)

Proof. Let f € C§°(R). From the representation (16), taking the properties of the functions ¢; (j € Z) into
account, we have:

W)l + XD oy = @)1 KA = BT,

/Ip nI® D " @il + M) p;(I — By) ' f*dy
{7}

As it is known that on A;(j € Z) the interval only functions ¢;_1, ¢;, ¢ 41 are nonzero, therefore

0o Jj+1
[p(w) 1] (Ln + A) 1f|}L <> /|p(y)|n|az<pj(ln,j+)‘I)71‘Pj(I_B>\)71f|2dy§
-1

=—00
J A,

<9 Z p@) 210l + M) 051 = BT 7 <

j=—o00
(o]
< 9sp o)1y s + M)y 3 o5t = ) oy <
]——OOAJ.
< 9sup o) inf* s g + M)y /Z% (L - By fl2dy (31)
Since (3 ¢7) =1, then from (31) we have
J
o0
o)) + AL ) < 9sup [[p(v)inl ;s (s + AD s, / (1= By) "' fPdy <
< 95up [[p(y) | ;! ng FAD a1 =B 5y 13- (32)

Lemma 2.5 implies that ||[I — By[>_,, < ¢()\) . From this and from (32) we obtain that
_ o 12
[PV + AD T, 2y < 97 €N f )l st s + AL
J

Lemma 2.11 is proved.
Lemma 2.12. Let the conditions i)-ii) be fulfilled. Then the following estimates:
[Ro(y)(Un + AD) =1l 1y (m)—s 1o (r) < Co < 003 (33)
IRyl (ln +AD) 1]l 1y (m) s Lo (r) < C1 < 003 (34)
[Re () (U + M) 1|y ) < C2 < 003 (35)

hold, where Cy, C;, C are independent of n (n = 0,+1,+2...).
Proof. (30) shows that the operator Ro(l,, +AI) is bounded, if sup || Ro(y)p; (In,; + M)~ HL ) is bounded.
i€z

Therefore, we will estimate the last expression

1Ro()es (b + AD T, s acry < COVsp [ Ro@)es (b + AD T, <
JEZ J

< C(X) sup max [Ro(y)e;[* || (ln,; + M) IHL <C’( )SupmaxR0 ) [Ty + A1)~
JEZYED;

1
enveA ||L2(Aj)'
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Hence, taking the inequality (23) and the condition ii) into account, we find that

< C(\) sup R (v) <C(\) - pd < C2 < 0.

_1p2
||Ro l + )‘I HLQ(R)—>L2(R) - ly—t|<1 R(%(t)

The last estimate proves the inequality (33) of Lemma 2.12.
Let us prove the inequality (34). Using Lemma 2.11, we have:

| R1(y)|n|(Ln + AI) <C(\ wﬂ& )nlej(ln; + A1)~

1||L2(R)—>L2(R) HL (A))—La(A; )

< C(\) sup max R§(y)[n|* [|(In,; + AI)~

'
JEZ yeR; L2(Aj)—L2(A;)

Hence, using (24), as well as considering condition ii), we find that

<O\ - p3 < 0% < .

_ 2
| Ri(y)In|(Ln + M) 1||L2(R)—>L2(R)_

The inequality (34) is proved.
Let us prove the inequality (35). Reproducing the computations arguments used in the proof of the inequali-
ties (33), (34) and using the inequality (25), we obtain

[ Ra(y)In]* (Lo + A1)~ <C(A sup||R2 )InPo;(ln,; + M)~

2 2
! ||L2(R)—>L2(R) ! HLQ(AJHLQ(AJ) <

SC()\)'M§§022<OO.
The inequality (35) is proved. Lemma 2.12 is completely proved.

& Proof of Theorem 2

The representation (20) implies that

Ro(y)u(z,y) = Ro(y)(L+ )" f(z.y) = > Ro(y)(ln + M) fuly) - €™
Calculate the norm Ro(y)(L + X)L f:
%) 2
| Ro(y)(L + /\I)’1f||2LZ(Q) = > Ro)Un + M) fuly) - ™ <
n=-—oo LQ(Q)

<2r 3 [Ro()(ln + AT a®) - €71} 0 -

n=—oo

From this and from Lemma 2.12 we have that
12 = 12 2 2
HRO(y)(L + AI) 1f||L2(Q) <2r Z ||R0(y)(ln + ) 1”[,2(9) : ||fn(y)||L2(Q) < Cg Hf”Lz(Q) .
From the last estimate, it follows that

1Ro(y)u(z,9)l| 1y = [[RoW(L+ XD f(@,y)]| 1, ) < Co [(L+AD) |, (36)

where (L + M)u = f.
Similarly, by virtue of the estimate (34) we have:

ou

w3 7

< Cy|[(L+ M)~

“HL Q)"
L2(Q2)
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Similarly, repeating the above calculations, we get that

2

P3u
HRl(y)axS . <G [(L+AD) ) - (38)
2(Q)
Now the inequalities (36)-(38) imply that
Pu ou
L+M)—R — — R — —R - A < (L + AT

[ R R e R (LA U

&u ou
+ R2(y)@ + (| By )5y + [[Ro(W)ull 1y ) + 1Ml o) < IL 4+ ADull L, ) +

L2() L2(Q)

+C [(L + Mull () + Cr L+ ADul o) + Co (L + AD)ul| ) + ML+ ADu L, o) <

C) L+ Al L, q) - (39)
We obtain from the inequalities (36)-(39) that

ou H u H ou
— R R + || Ro(y)u < CN) (|| Lu + ||u .
5 o RO | R Rl < CONIEe + )
Theorem 2 is completely proved.
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M.B. Mypar6ekos, A.O. CyneiimbekoBa

KopreBer-g1e ®@pu3 TUIITI CHI3BIKTHI CUHTYJISAPJIBI OTIEPATOPJIAPIbIH,

Oip KJIaCBIHBIH, 0ap O0JIYbI 2koHe OOJIIKTEeHY1 TypaJibl

MakaJtaza mekcis obJibicTa KoadduimneHTTepi mekcizaikre xkouigaMm ecetin Kopreer-ne @pusa Tunti cbi3-
BIKTBI orepaTop 3eprreiireH. zKorapbliarbl KepceTiireH auddepeHIua ablK onepaTop YIIiH TOMeH/Ieri
CypakTap KapaCThIPBIIFAH:

— Pe30JIbBEHTAHBIH 0ap OOJIYbI;

— OIlepaTOPAbIH, OOJIIKTEHY1, AFHU OIEPATOPBIH aHBIKTAIY OOJIBICHIHIAFEI (DYHKIMAIAPIBIH TETicTiri 3epT-
TeJIPEH.

Kiam cesdep: pezonbeenTa, Kopeser-me @pu3 Tunti CUHTYISAPIBI OIEpPaToOp, OOTIKTEHY.

M.B. Mypar6ekosn, A.O. CyieiimbekoBa

@) CylmeCTBOBaHNU PE30JIbBEHTbI U pa3dAe/JIMMOCTHU OJHOI'O KJIacCCa
JINHEeHbBIX CUHI'YJIAPHDBIX OII€epaTOpPOB THUIIA KopTeBePa—,ue (DpI/IBa
B crarbe uccnenosan smuelHbI quddepennuanpabiil oneparop tuna Kopresera-ne Ppusa B ciaydae He-

OrpaHUYEHHON 00JIACTH C CHJIBHO PACTYIUMU Ko3ddurmeHTamMu Ha beckoHedHoCcTH. /{11 yKa3aHHOTO BbIITe
onepaTopa M3y4deHbI CJIELyIONUe BOIPOCHL:

— CyLIeCTBOBaHUE PE30JIbBEHTDI;

— Pa3geJIMMOCTD olliepaTopa, T.e. IVIAAKOCTb (byHKLII/Iﬁ u3 obIacTu OonpeiesjIieHnd U3y4aeMOoro orneparopa.

Kmouesvie caosa: pe3oabBeHTa, CHUHTYIISPHBIN oneparop Tuna Kopresera-me @pusa, pa3aeauMoCTb.
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On construction of a field of forces along given trajectories
in the presence of random perturbations

In this paper, a force field is constructed along a given integral manifold in the presence of random perturbi-
ng forces. In this case, two types of integral manifolds are considered separately: 1) trajectories that depend
on generalized coordinates and do not depend on generalized velocities, and 2) trajectories that depend on
both generalized coordinates and generalized velocities. The construction of the force field is carried out
in the class of second-order stochastic Ito differential equations. It is assumed that the functions in the
right-hand sides of the equation must be continuous in time and satisfy the Lipschitz condition in generali-
zed coordinates and generalized velocities. Also this functions satisfy the condition for linear growth in
generalized coordinates and generalized velocities. These assumptions ensure the existence and uniqueness
up to stochastic equivalence of the solution to the Cauchy problem of the constructed equations in the
phase space, which is a strictly Markov process continuous with probability 1. To solve the two posed
problems, stochastic differential equations of perturbed motion with respect to the integral manifold are
constructed. Moreover, in the case when the trajectories depend on generalized coordinates and do not
depend on generalized velocities, the second order equations of perturbed motion are constructed, and
in the case when the trajectories depend on both generalized coordinates and generalized velocities, the
first order equations of perturbed motion are constructed. And further, in both cases by Erugin’s method
necessary and sufficient conditions for solving the posed problems are derived.

Keywords: stochastic differential equations, inverse problems, stability, integral manifold.

Introduction

The theory of inverse problems of differential systems in the class of ordinary differential equations is quite
fully developed in [1-6, etc.]. And set of ordinary differential equations is constructed along a given integral curve
in [1]. This work later turned out to be fundamental in the formation and development of the theory of inverse
problems of the dynamics of systems described by ordinary differential equations. Formulations, classification of
inverse problems of differential systems are stated and general methods of their solving in the class of ordinary
differential equations are developed in [2—-6]. We also note [7—9], in which inverse problems of dynamics of
automatic control systems are considered in the class of ordinary differential equations. Methods for solving
inverse problems in the class of ordinary differential equations are generalized to the class of Ito stochastic
differential equations in [10-14]. In this paper, the results of [15, 16], obtained in the class of ordinary differential
equations, are extended to the class of Ito stochastic differential equations.

1 The problem of construction of a force field along given trajectories
(independent of velocities) in the presence of random perturbations

Let the trajectory
A ANz, y,t) =0, me A = Az, y,t) € 0312/?7 AeR! (1.1)
be given. It is required to construct a force field in the presence of random perturbing forces so that the
constructed force field has a given trajectory as an integral manifold

{ $:X1($7y7t)+31($ayvt)f, (1 2)
g:Yl(xayvt)+5l(xayat)£v )

*Corresponding author.
E-mail: v_ gulmira@mail.ru
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here £ = £(t,w) is random process with independent increments, which, following [17], can be represented as a
sum & = &+ [ ¢(p)PO(t, dp), where & is a Wiener process and P is a Poisson process. P%(t, dyu) is the number
of jumps of P° on the interval [0,], that fall on the set du. c(u) is a scalar function mapping the space R? into
the space R! of values of the process £(t) for any t.

Definition 1. A function f(z,t) belongs to the class K, f € K, if z is continuous in ¢, ¢ € [0, 00|, and is
Lipschitz continuous in x and y ||f(z,t) — f(2,t|| < B||z — Z|| in the entire space z = (z,y)T € R? and satisfies
the condition ||f(z,t)|| < B(1+ ||z]|) of linear growth with respect to z with some constant B.

It is assumed that, X;(z,y,t), Y1(z,y,t), 01(z,y,t) and &1(z,y,t), belong to the class K, which ensures
the existence and uniqueness in the space R up to stochastic equivalence of solution (z(t),y(t), @(t),y(¢t))* of
the system of equations (1.1) with the initial condition (z(to), y(to),#(t0),9(t0))* = (z0, 0, %0, 90)T which is
continuous with probability 1 strictly Markov process [17].

The projections of the velocity of a material point &,y onto the coordinate axes x,y are determined from
the equation _

A=A+ a4+ Ay

Differentiating the last expression with respect to time, we obtain

A= Mt + M+ gt + Aoy )3 + Aadi + My + Aaoy® 4+ Mgy 0)9 + Ayij =

= )\tt + )\tzjf' + >\tyy + )\a:acj;2 + 2>\myxy + )\x(X + 316) + )‘nyQ + )‘y(y + 516) (13)

To ensure the integrality of set (1.1) for the system of differential equations (1.2), following Erugin’s method,
we introduce the vector function A and the matrix B

Ay = A (N Nz y,&,0,t), By =B\ Aa,y,d,9,1)
with properties A1(0,0;z,y,,9,t) = B1(0,0;z,y,&,7y,t) =0, such that
\= A, + B{&. (1.4)
In view of (1.3) and (1.4), we have
Ar = Mt 4 AMia + Ay + Aaad® 4+ 2Dy @9 + Ay + X X + 2V,

By = \,01 + )\,,51

Let \2 + )\5 # 0 takes place, then
a) if A\, # 0 for any z,y, then

X1 =27 (A = Apwd? — 22039 — Ay — A,Y) (1.5)
o1 =M1 (B1 — \yo1) ’
for any Y7, 0 from the class K;
6) if Ay # 0 for any «,y, then
Y = A;l(Al — Aaad? = 200y @87 — Ay ¥? — Ao X) (1.6)
51 = )\y_l(Bl — )\wal) ’

for any X1, 07 from the class K.

Theorem 1. A necessary and sufficient condition that the set of force fields (1.2) has a given trajectory (1.1)
in the presence of random perturbations from the class of processes with independent increments is that one of
conditions (1.5) or (1.6) be satisfied.

2 The problem of construction of a force field along given trajectories
(depending on velocities) in the presence of random perturbations

Let us consider the case when the given trajectory A depends on both generalized coordinates and generalized
velocities

A N, @,y,9,t) = 0, where A = Az, &,y,9,t) € Cy2. %1, A € R'. (2.1)
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It is required to construct a force field in the presence of random perturbing forces so that the constructed force
field has a given trajectory as an integral manifold

{ & = Xa(x,y) + 02z, y)n, (2.2)
§ = Ya(,,1) + 5o, 5, ), '

here n = n(t,w) is scalar Wiener process [17].
Let us compose the equation of the perturbed motion relative to a given trajectory (2.1). To do this, we
differentiate (2.1) with respect to time and obtain

A=A+ Ao+ N+ Ny + Nyl =
= A+ Aa(X + Bi) + Ayl + Ay (Ve + ) + 5 (M3 + Xy53). (23)
Further, following Erugin’s method [1], we introduce the vector function Ay the matrix Ba
Ay = Ao (N, y,8,9), Ba = Ba(Nw,y,2,7)
with properties As(0;z,y,2,y) =0, Ba(0;,y,4,y) = 0 such that
A= Ay + Bai. (2.4)

In view of (2.3) and (2.4), we arrive at the relations

1
Ay =X+ A X + Ay + Y + 50\9‘;9‘:02 + /\yy‘72)
By = )\;09 + )\ygz

Let A + A7 # 0 takes place. Then
a) if Az # 0 for any z,y, then

1
{ Xz = A7! (A2 = Aot = Ayl Ag¥ — 5 (Aa0F + Xj553) 25)
G = \; (B — \yo2)
for any Y5, 09 from K
b) if Ay # 0 for any z,y, then
1
{ Yo = At (Ae = Aot — X Xo + Ay — 5 (Aas03 + Ayy3) (26)
G2 = A; ' (B2 — A\i01)

for any X5, 05 from the class K.

The following theorem holds.

Theorem 2. A necessary and sufficient condition that the set of force fields (2.2) has a given trajectory (2.1)
in the presence of random perturbations from the class of Wiener processes is that one of conditions (2.5) or
(2.6) be satisfied.

Conclusion

Thus, the article deals with stochastic problems of constructing a force field along given trajectories. In the
first section trajectories depend on generalized coordinates and do not depend on generalized velocities. And in
the second section trajectories depend on both generalized coordinates and generalized velocities. The obtained
results extend Galiullin’s some statements [2,3] on the construction of a force field from a given family of
trajectories in the class of ordinary differential equations to the class of second-order stochastic Ito differential
equations.
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M.BI. Tiney6eprenos, I'.'K. Bacumuna, I'A. Ty3zenbaeBa

Kezneiicok TypTKi OoJsiFaHaa OepijireH TpaeKTopuaaap
OoiibIHIIIA KYINTEP OPICIH TYPFBI3Y TYPAaJIbl

Maxkanana ke3meitcok TypTKIey i Kymrep 60araH1a OepireH NHTEerpaIblK, KomoeitHe OOMbIHITA KYIITIK
epic Typre3pLIFal. Byu apaja nHTErpasblK KenbeiiHeHiH eki Typi KeKe KApACTBIPBUIIBL: 1) »KajlblIaHFaH
KOOpJUHATTApFa TOYEJ/Ii KOHE >KAJIbLIAHFAH KbLIJIaMILIKTapIaH TOYEJICI3 eMeC TPAeKTOPHUsijIap KOHE
2) KaJIbUIAHFAH KOODIMHATTAPFA 1A YKAJIIBIIAHFAH KBUIIAM/IBIKKA 14 TOYeJ Il TpaeKTopusiap. Kymrik
epicti TypreI3y ekinmr perti to croxacTukasbik quddepeHnnaliIbK, TeHIeyIep KIachlHIa Ky prisiaei.
By apana, Tengeyin ol kafbliHA KipeTiH (GhyHKIHIAP, YAKBIT OONBIHINA Y31LIiCCi3 XKoHe JIe YKAJMbLIaHFaH
KOOPJIMHATTAP YKOHE YKaJIbLIaHFaH *KbLIIaMIbIKTAP OOWBIHINA JIUIIIUIL ITapTHIH KaHAFaTTAHIBIPATHIH, CO-
HBIMEH Oipre »KaJIIbIJIAHFAH KOOPUHATTAD YKOHE XKAJITbIIAHFAH XKbIIJIaM/ILIKTap OOMBIHINA CHI3BIKTHIK, 6CY-
Tl KaHAFATTAHIBIPATHIH 60Tybl Oo/KaMIa a6l Byt 6omkaMaap dpa3aibiK KEHICTIKTe, TYPFBI3bIIFAH TEHJIEe-
ynepain Komm ecebinin, menriminis, y3iicci3 1 bIKTUMAJIBIKTEI KATaH MapKOBTIK yIepic OOIbIT TaObLIATHIH,
CTOXACTUKAJIBIK dKBUBAJEHTTIKKE JeiiHri 6ap OOJIybIH YKOHE »KAJIKBIIBIFBIH KaMTaMachl3 ereii. Koiiburran
€Kl eCemTi MmIelTy YIIiH TYPTKIJIEHTeH KO3FAJIBICTHIH CTOXACTUKAJBIK IuddepeHInaIIbIK TeHIeyaIepl nHTe-
rPaJIAbIK, KOIbeiHe OOMBIHITIA TYPFBI3bLIALL. 2K AIIbIIaHFaH KOOPAHHATTAPTA TOYEJI/Il KOHE YKAJbLIAHFAH
KBUTTaMIBIKTapIaH TOYEJICI3 TPAEKTOPUAIAD »KAaFAalbIH/Ia, eKIHIIT PeTTI TYPTKIJIEHIeH KO3FAJIbIC TEHJIEY-
Jiepi; aJ1 »KaJblLIaHFaH KOOPJIMHATTAPFA Ja KAJIIBIIAHFAH KBLIIAMIBIKTAPFA J1a TOYEJJII TPACKTOPUIAD
JKarIaibIHga, GIpiHII peTTi TYPTKIJIeHreH KO3FaJIbIC TEeHJIey/Iepl TYPrb3blIainl. Opi Kapail, Epyrun omici
OoibIHIIIA €Ki KaFmaiiia Jla KOMBLIFAH ecenTep/iH IIENIIYiHIH KaXKeTTl »KOHe »KeTKUIKTI mapTrrapbl KO-
PBITBLIBIN IBIFAPBLIIBL.

Kiam cesdep: croxacTHKAJBIK, AnddepeHInaIIbK TeHIEYIep, KePi eCenTep, OPHBIKTHLIBIK, MHTETPAJIIBIK,
Kerbeiine.

M.U. Trey6eprenos, I.K. Bacunmmna, I A. Ty3senbaeBa

O IIOCTPOEHHUMN IIOJIA CUJI 110 3aJaHHBbIM TPAaCKTOPpUAM
IIpn HaJINYI1NN Cﬂy‘{aﬁHI)IX B03My1U;eHI/II71

B craTbe mocTpoero cuioBoe mosie o 3aJaHHOMY WHTErPaJTbHOMY MHOTOOOPA3UIO P HAJIMINH CTy YaiHBIX
BO3MymaOmMux cuil. [Ipu 9TOM OTZeIbHO PACCMOTPEHBI [Ba BUJA HHTEIPAIBHBIX MHOroo6pasuii: 1) TpaekTo-
PHH, 3aBUCSIIHAE OT 0GOOIIEHHBIX KOOPIUHAT U He 3aBUCSIIIIE OT 00OOIIEHHBIX CKOPOCTel, U 2) TPAeKTOPHH,
3aBUCAIIIE KaK OT 0DODIIEHHBIX KOOPAUHAT, TaK U OT 0000IeHHbIX cKopocTeii. [locTpoenne cujioBoro moJist
MIPOBOUTCS B KJIACCE CTOXACTUIECKNX nuddepeHInaabHbiX ypaBaennit Vito Broporo nopsaka. [Ipu sTom
npejnoJiaraerTcst, 9To (OyHKIUU, BXOJSIINE B IPABble YaCTH YPAaBHEHWs, JIOJKHBI OBbITH HEIPEPbIBHBIMU
10 BPEMEHU W YJOBJIETBOPSTH ycjaoBuio Jlummuma mo o600IEeHHBIM KOOpAnHATAM U OOOOIIEHHBIM CKOPO-
CTsIM, a TaKKe YCJOBUIO JIMHEHHOTO POCTa MO 00ODINEHHBIM KOOPAUHATAM U OOOOIIEHHBIM CKOPOCTSM. DTU
MIPEJIIIOJIOYKEHNsT 00ECIIeINBAIOT B (ha30BOM IIPOCTPAHCTBE CYIIECTBOBAHUE U €IUHCTBEHHOCTD 10 CTOXACTH-
9eCKO KBUBAJIEHTHOCTH PeITeHusT 3a1a9n KO TOCTPOEHHBIX YPABHEHUI, SIBJISIOIIETOCS HETTPEPBIBHBIM
C BEPOSITHOCTBHIO 1 CTPOro MapKOBCKHMM IporieccoM. Jljis pelenusi MOCTaBJIEHHBIX JBYX 3aJad CTPOATCS
croxactuyueckue JuddepeHImaibable YPABHEHHsI BOSMYIIIEHHOTO JIBHKEHUsI OTHOCUTEJBHO NHTErPAJILHOIO
MHOT0o0Opasusi. [Ipuuem, B citydae, KOrga TpaeKTOPUHU 3aBUCST OT OOOOIIEHHBIX KOODJMHAT W HE 3aBUCST
OoT 060OIIEHHBIX CKOPOCTEM, CTPOATCS YPABHEHUsI BO3MYIIIEHHOTO JBUXKEHUS BTOPOrO HOPSIJIKA, & B CIIydae,
KOTJIa TPAEeKTOPUU 3aBUCIT KaK OT ODODINEHHBIX KOODJIUHAT, TaK U OT OOOOIIEHHBIX CKOPOCTEH, CTPOSITCS
ypaBHEHUsI BO3MYIIIEHHOTO JIBUKEHHUsI MepBoro mopsinka. U gamee, meromom Epyrumua B 060mMxX Ciydasix
BBIBOZATCS HEOOXO/IMMBIE U JOCTATOYHBIE YCJIOBUSI PEIIEHUsI TIOCTABJIEHHBIX 3a/1a4.

Kmouesvie crosa: croxactudeckue quddepeHnnaibHble ypaBHeHUsI, 0OpaTHbIE 3818491, YCTONIYMBOCTD, UH-
TerpajbHOe MHOIoobpasue.
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The solvability conditions for the second order nonlinear
differential equation with unbounded coefficients in L,(R)

The article deals with the existence of a generalized solution for the second order nonlinear differential
equation in an unbounded domain. Intermediate and lower coefficients of the equation depends on the
required function and considered smooth. The novelty of the work is that we prove the solvability of a
nonlinear singular equation with the leading coefficient not separated from zero. In contrast to the works
considered earlier, the leading coefficient of the equation can tend to zero, while the intermediate coefficient
tends to infinity and does not depend on the growth of the lower coefficient. The result obtained formulated
in terms of the coefficients of the equation themselves; there are no conditions on any derivatives of these
coefficients.

Keywords: second order differential equation, nonlinear differential equation, differential equation in an
unbounded domain, generalized solution, solvability.

Introduction

We investigate the following second-order singular differential equation

—p(z) (p(x)y) +r(z,9)y + s(z,y)y = f(z), (1)

where x € R = (—o00,+00), p is a twice continuously differentiable function, r is a continuously differentiable

function, and s is a continuous function, f € Ly & Ly(R), || - ||2 is the norm in Ly. The singularity of the
equation (1) means that it is given in a non-compact domain, and its coefficients can be unbounded.

The study of the equation (1) and its multidimensional generalizations is related to applications in quantum
mechanics, stochastic analysis and stochastic differential equations [1-4]. In the above references the linear case
is considered and results are obtained for s(z,y) = s(z) > § > 0, and the growth of |r(z, y)| = |r(x)| at infinity
is bounded by some positive power of s(x). In the following researches [5-8] the linear case of equation (1) is also
considered and it is assumed that the intermediate coefficient r(x) can not grow faster than |z|ln |z| at infinity.
In [5-8] issues on solvability of the equation (1) were considered only for the case p(z) > § > 0. The issue on
solvability of the equation (1) stays unresolved for the case when the growth of |r(x)| is faster than |x|In|z| and
is not dependent on s, and also when the coefficient p(z) approaches zero as x — 400 or as & — —o0.

For the case when p = 1 and |r| grows rapidly and does not depend on the coefficient s the equation (1)
was analyzed in [9]. Here it was determined the solvability and the maximal regularity for the solution. The
linear case for the equation (1) with a fast-growing growing intermediate coefficient was studied in [10] (when
f € Ly), [11] (when f € L1(R)) and [12] (when f € L,(R), 1 < p < 400). In [10-12] the function p(x) is
assumed to be separated from zero and bounded, or equal to 1. The study of the solvability of different classes
of partial differential equations with unbounded coefficients is presented in [13-16].

Note that the rapid and independent growth of the absolute value of the intermediate coefficient r» makes
a big difference for solvability of the equation (1). Firstly, in this case the coeflicient s can be unbounded from
below. Moreover it can approach to —oo with certain rate [11, 12|, where the rate of approaching s to —oo
depends on the growth rate of |r|. Also let us note that in the study of the Sturm-Liouville equation (the case
p=1,7=0, s(x,y) = s(x)) it is usually assumed that s > —kx? for some k [2]. Such condition in the case of
equation (1) with unbounded r is not necessary.

*Corresponding author.
E-mail: adilet.e@gmail.com
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Secondly, due to the growth of the absolute value of r in the equation (1) it turns out we can assume
approaching zero at infinity for the coefficient p in the leading term, thereby considering the so-called case of
degeneration. The theorem 1 presented below shows that the rate of approaching p to zero also depends on the
growth of |r|.

In the work [17] the results of the correct solvability and also a coercive estimate for the equation (1) was
established in the case r(x,y) = r(z), s(z,y) = s(x) and p(z) > 0. In this paper we propose to extend some of
the results obtained in [17] to the case of nonlinear generalization of equation (1).

Preliminaries

Let C’(()k)( R)(k = 1,2,...) be the set of k times continuously differentiable functions on R with compact

support and C’(])( R) def{ ty € C(J)( R), V¢ € Céj)(R)} (j = 1,2). Consider the following linear equation

loc

—p(@) (p(x)y') + r(@)y + s(x)y = F(x). (2)
Let g and h # 0 be given continuous functions. We denote

def

o ® L lallaon 1 iy >0 Bon® Zllgllsirny 10 sy (7 <0,

def def def
agn = supagp(t), Ben = sup Byn(T), Yor = max (agn,Ben) -
t>0 7<0

The following statement is proved in [9].
Lemma 1. If g and h are continuous functions such that v, < +oo. Then for y € C(gl)(R) the following

inequality holds
/Ig o) dx < 01/|h o) da.

Moreover we have (min (¢ p, 5g7h)) <Cp <4 (’ygyh) .

Let the operator loy = —p(x)(p(x)y') + r(x)y’ + s(z)y is defined on the set C’éz)(R), we denote the closure
of the operator Iy by ! in Lo. The function y € D(1) such that ly = f is said to be a solution of the equation (2).

The following statement is proved in [17].

Lemma 2. If 0 < p(x) < 400 is a twice continuously differentiable function, r(z) > 1 is a continuously
differentiable function, and s(x) is a continuous function, r(z) > p*(z), Y,y < +00, Vs,r < +00 and there
exists a € R such that

[ r(t)
su r)exp | — dt < +00.
sup 3 ptwresp | = [ s

x

Next, let there be Cy > 1 such that

G <@ <o <™, as pov<t
p r(v)

Then for any right-hand side F' € Loy the linear equation (2) has a unique solution y and for y the following
inequality holds

|=p(ew)' |, + ry/lls + syllz < o P,
where Cs depends only on C2, 7,7 and s r.

The solvability conditions for the second order non-linear differential equation

For continuous functions of two variables g(x,y) and h(z,y) # 0 we denote

1
2

t 400
def dx
Oég7h(t7y) = /‘g(l‘7y)‘2dl‘ / W (t > 0),
0 t
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[ dz
Par | | [ i 0

=

agn(y) d:efb;;llo)ag,h(tay) Bg.n(y) &4 bupﬁg, (1,9),

Yon(y) & max (ag (), Bon()) -

Definition 1. Let y € Ly. y is said to be a solution of the equation (1), if there exist a sequence {y, } C CZ(OQC) (R)
such that

1 (yn — y)ll2 = 0 and ||¢o(Ly, — f)]l2 — 0 as n — 400, Vi) € C(OO)( R).

Theorem 1. Let p(x) be a twice continuous differentiable and bounded function, r(x,t) be a continuous
differentiable function, s(z,t) be a continuous function and

£ 2
r@t) > e @), sy gy <00 SID s < oo

there exists a € R such that

sup ¢ p(z)exp | — / Mdv < 400
z<a J p?(v) '
Also for some § > 0 and VA > 0 the inequalities holds
r(z,y) > (14a%)1, 3)

_1_ pla)
sup sup <T(A) <400, C'<Z=L<KC0y, a8 |z—v <1
le—v|<1|C/—C"|<A 7‘( C") ! p(v

Then the equation (1) have a solution y, and for y the following inequality holds
1= p(@)(p(@)y )2 + lIr (2, 1)y [l5 + Is(z, y)yll2 < +o0.

Proof. Let C(R) be a space of continuous and bounded functions with the norm |[|y||c () 1/ sup |y(t)|, and
teRr

¢ and A are given positive numbers. We consider the following set

Ba“ {2 € CR): |2llew < A}-
Let v € By, and L, . be a closure in Ly of linear differential operator
loe = =p(@)(p(@)y) + (r(z,v(x)) + (1 + %))y’ + s(z, v(2))y,
defined on the set 0(2)( R). Now we consider the equation
Lyey=f. (4)

A function y € D(L, ) satisfying the equation (4) we call a solution of that equation. Since the conditions of
lemma 2 hold for the functions p(z), 7(z,v(z)) + (1 + 22), s(z,v(z)) then for any f € Ly the equation (4) has
unique solution y = y.(z), and for y the following estimate holds

I = p(@)(p(@)y') |2 + || (r(z, v(@)) + (1 + %)) /||, + [|s(z, v(2))yll2 < Cs]If]2- ()

106 Bulletin of the Karaganda University



The solvability conditions...

Let £ > 0. Using the Holder’s inequality we get

|(1+2?)Fy| = /((1+t2)ky)'dt< /(1+t2)k|y’|dt+k /(1+t2)k|y|dt:
—00 —0o0 —00
x x
= /(1+t2)*a(1+t2)’“+a|y’|dt+k /(1+t2)*5(1+t2)’“+ﬁ\y|dtg
- z 3 xioo 3
< /(1—|—t2)‘2"‘dt /(1—|—t2)2(k+°‘)|y’|2dt +
T 2 x %
+ /(1+t2)_25dt /(1+t2)2(k+5>|y|2dt . ()

We choose the numbers o and 3 so that % < a, % <pf<La-— % Then

1 1
x 2 x 2
/(1+t2)’2adt /(1+t2)2(k+“)|y’|2dt +
x 2 x 2
- /(1+t2)*25dt /(1+t2)2<k+ﬁ)|y|2dt <

< o [[(1+a®) oy ||, + Cr [|(1+22)" Py,

y'll,

Using the lemma 1 and the condition a > 8 + % we obtain

Co [|(1+2*)**2y/[|, + Cr |1+ %)y, < Cs (1 + )Ty

I 2

Leta:%—t—

\els)

and 8= 1+ ¢, where ¢ is the number from the condition (3). Then from (6) and (7) we receive

sug |(1 + x2)’“y} < Cy H(l + z?)
S

Finally, by putting k = % and taking into account the condition (3), we obtain the following estimate

5
sup |(1+ 2%) 3| < Cs Iyl
z€R

Therefore due to (5), lemma 1 and the condition (3) we have

ol <1 = p@) @)y 12 + || (@ v(@)) + (1 +27) o/||, +

+H(s(:v,v(x))+(l+fr )yH +sup (1+2%)

s
2

y(@)| < Colfll2, (&)

where the constant Cy does not depend on y.

Let A = Cq| f|l2, and Ll be an operator inverse to L, .. We denote P.(v) = 2/ L;Lf. It follows from (8)
that P.(v) maps the ball B, into itself. Moreover B4 is mapped to the set

def

{y:lylw < Gollfll2}-

1. Since Q@4 C By then the set of the functions @ 4 is uniformly bounded
2. According to Morrey’s inequality [18, p. 282] with p = 2 for the functions y € W3 (R) the following
inequality holds

Hy”c"%(n@) < Cho ||y||W21(R) ,
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where C%2 (R) is a Holder space with a norm

Iyl o2 = sup M.
@) afeR, Vi]a—b|
a#b
Therefore, for any y € Q4

ly(t+h) — y(t)| < Cuv/Ih],

and hence functions from @Q 4 are equicontinuous.
3. It follows from the estimate (8) that

S
2

sup (1 + xz) y(a:)‘ < A,
z€R
therefore, for any y € Q4 we have
sup |y(z)| < = — 0 as |z] = +oo.
z€R (1 +x2)§

Hence, the set 4 is compact in C(R).
We consider a sequence of functions {v,},> C Ba such that [Jv — Unllc®) — 0 as n — +o0, and denote
P.(vy) = yn. Then L, .y, = f and by virtue of linearity of L, . we receive

Ly e(yn —y) = (r(z,v(z)) = r(z,va(2)))y;, + (s(z,v(2) — s(z, va(2))) Y-

Therefore, for any N > 0, taking into account that the functions r(z,v(z)) — r(z,v,(x)) and s(z,v(z)) —
—s(x,v,(x)) are continuous in R, we get

lyn — y||L2(7N’N) < Cio max ( sup ‘r(m,v(m)) —r(x,v,(x))|, sup ‘s(m,v(m)) — s(x,vn(x))o X
|z|<N lz|<N

X (”y;LHLg(—N,N) + ||yn||L2(—N,N)> — 0,

as n — +o0.

As v, € By then y, € Q4. Since Q4 is a compact in Lo, and the operator L, . is closed then the Cauchy
sequence {y, fli’j converges to the element y € Q4 (due to the uniqueness of the limit). Therefore P, is a
continuous operator.

Thus, the continuous operator P, : By — B4 maps the ball B4 into itself, hence according to the Schauder
theorem it has a fixed point, i. e. 3y € B4 : P.(y) = y. In other words y satisfies the equation

—p(@)(p(@)y) + (r(w,y) + (1 + %))y + s(z,y)y = f(@),
by virtue of (8) the following estimate holds
I = p(@)(p(@)y') |2 + || (r(2,y) + (L +2)y/[|, + s(z. y)yll2 < Coll 2.

We consider a sequence of positive numbers {sk}:fl tending to 0. If y,, € B4 is a fixed point of the operator
P;, then
—p(@)(p(@)yr,)" + (r(z,yr) +ex(1+22))yi + sz, yu)ye = f(=),
and
I = p(@)(p(@)yi) |2 + || (r(2, yo) + el +2))yi|, + lIs(z, yn)yrllz < Crs(er)llfll2- (9)

Let [a,b] C R be a finite segment. Since the space W3 (a, b) is compactly embedded to La(a,b) then there is
a subsequence {yx, }:1°7, converging to y by the norm of L (a,b), that is

legloo Hykl - y||L2(a,b) =0.

Then according to the definition 1, y is the solution of the equation (1), and by virtue of (9) the following
estimate holds

| = p(@)(p(x)y") l2 + Ir(z, )y [l + (2, y)ylla < +oo.
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Conclusion

In this work we considered the conditions of the correct solvability as well as established a coercive estimate
for the second-order differential equation (1) in a non-compact domain, and with coefficients that can be
unbounded. In the case of a Hilbert space, this work generalizes the results of [17] to the nonlinear differential
equation.
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A.H. Ecbaes, M.H. Ocmanos

Ly(R)-me nrenesnmeren kosdduiimenrrepi 6ap
eKiHIIl peTTi ChI3bIKThIKeMecC AnddepeHIaIabIK,
TEeHJIEY/IiH eIy IIapTTapbl

MakaJjtazia meHesMeres 06JIbICTa ChI3BIKThIEMEC eKiHII peTTi JuddepeHImaaIblK TeHIeYIiH KAl II1e-
mriMinig 6ap 601y Mocesreci KapacThIpbLIFaH. TeHIey/IiH apaJiblK, KoHE eH Killli Ko3dUIHEeHTTep] i3/1e/reH
bYyHKIUSAFa TOYEJIl *KoHe Teric 6obin canamaabl. 2K YMBICTBIH >KAHAIIBLIIBIFBI — YIKEH Koddduiimen-
Ti HOJIIEH e3re OOJIATBIH CHI3BIKTBIEMEC CHUHTYJISAPJIBIK TEHJEY/iH IIeNJIeTiHrH goesaeTinairimisae.
Bypein kapacTeIpbuIFaHIapIaH ARBIPMAIIBLIBIFLL, TEHIEY/IH VIKEH KOd(MDMUIMEHTI HOITe YMTBLIYBI MYM-
KiH, aJ1 apaJIbIK, KOI(MDDUIMEHT MEKCI3MIKKe YMThLUIA b 2JKOHE eH, Kirli KoadduimenTTin ecyine 6arbrHOaNIbI.
AtbIHFaH HOTHXKE TEHIEY/IiH KO3(DPUuIumeHTTepi G0MBIHINA TYKBIPBIMIAIFaH; Oy KO3(pDUIMEHTTEPIIH Ke3-
KeJITEH TYBIHBIIAPBIHA MapTTap KOWBLIMANIBI.

Kiam cesdep: exiumi perti nuddepeHNnaIIbIK TEHIEY, ChI3BIKThIeMeC AudMOEPEHITNAIBIK, TEHIEY, TEeHET-
MereH o0JIbICTarbl i OEPEHITUATIIBIK, TeHIEY, KaJIIIbl IIeNIiM, TIeIiM I iTiK.

A .H. Ecbaes, M.H. Ocmanos

VciioBusi pa3peniuMocT HeJnHeiHoro auddepeHnnaaibHoro
ypaBHEHHsI BTOPOTO TMOPSI/IKA C HEOTPAHUIEHHBIMU
ko3 dunmentamu B Lo(R)

B craTbe paccMmorpen Bompoc cyrecTBOBaHUsT 0OOOIIEHHOTO PENTEeHNsT HEJIMHEHOTO MuddEPEHITNATEHOTO
ypaBHEHUsI BTOPOTO MOPs/IKA B HEOrpaHUYEHHON obsiactu. [TpomMe:KyToOIHbIN U M IINi KO3(DDUIIUEHT
YPaBHEHUST 3aBUCAT OT MCKOMOU (DYHKIIMM W CYUTAIOTCS Tyiaakumu. HoBusHa paboOTBI COCTOUT B TOM, UTO
MBI JIOKA3BIBAEM DPA3PEINMOCTb HEJIMHEHHOTO CHHTYJISPHOTO YPABHEHUsI C HEOTIETEHHBIM OT HYJIsT CTap-
mmM KodddurmenroM. B ormvune or paboT, pacCMOTPEHHBIX paHee, CTapIInii KO3MpUIMEHT ypaBHEHUs
MOYKET CTPEMUTBCS K HYJIIO, & TMPOMEXKYTOUHBI — K OGECKOHEYHOCTH U HE TOIYUHSATHCS POCTY MJIAJIIIETO
kodddurmenTa. [lomydernsrit pedysnbrar cpOpMyIMPOBAH B TEPMUHAX CAMHUX KOI(DMOUIIMEHTOB yPABHEHNS,
B HEM HE CTaBSITCsl YCJIOBHUs Ha KaKHe-JTUOO MPOU3BOJIHBIE 3TUX KOIDDUIIMEHTOB.

Karoueswie crosa: muddepennmalibHOe ypaBHEHIE BTOPOro OpsiaKa, HejuHelHoe quddepeHimaibHoe ypas-
Henne, nudHepeHInaIbHOe YpaBHEHE B HEOIPAHUIEHHON 061acTr, 0O0OIIEHHOE PeIlleHne, PA3PENInMOCTh.
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An algebra of the central types of the mutually
model-consistent fragments

In this paper, the model-theoretical properties of the algebra of central types of mutually model-consistent
fragments are considered. Also, the connections between the center and the Jonsson theory in the permissible
signature enrichment are shown, and within the framework of such enrichment, instead of some complete
theory under consideration, we can obtain some complete 1-type, and we will call this type the central
type, while the theories under consideration will be hereditary. Our work is divided into 3 sections: 1) the
outer and inner worlds of the existentially closed model of the Jonsson theory (and the feature between
these worlds is considered for two existentially closed models of this theory); 2) the A-comparison of two
existentially closed models (the Schroeder-Bernstein problem is adapted to the study of Jonsson theories in
the form of a JSB-problem); 3) an algebra of central types (we carry over the results of Section 2 for the
algebra (Fr(C), x), where C is the semantic model of the theory T). Also in this article, the following new
concepts have been introduced: the outer and inner worlds of one existentially closed model of the same
theory (as well as the world of this model), a totally model-consistent Jonsson theory. The main result of
our work shows that the properties of the algebra of Jonsson theories for the product of theories are used
as an application to the central types of fixed enrichment. And it is easy to see from the definitions of the
product of theories and hybrids that these concepts coincide if the product of two Jonsson theories gives a
Jonsson theory.

Keywords: Jonsson theory, central types, ¢(x)-set, outer world, inner world, A-comparison, totally model-
consistent theory, fragment, algebra of the central types, semantical model.

In this article, we will consider an algebra that is related to the central types of some fixed Jonsson spectrum;
more precisely, we work in one of the cosemanticness classes of some Jonsson spectrum. Moreover, the center
of this class is a perfect, totally model-consistent theory. One of the special cases of the JSB-problem is also
considered within the framework of the study of the class of existentially closed models of some fixed Jonsson
theory. The problems related to the description of the syntactic and semantic properties of the Jonsson spectrum
JSp(A), where A is an arbitrary model of an arbitrary signature, are new problems that appeared in the study
of the cosemanticness properties of fixed Jonsson theories [1; 80]. The works related to this topic include the
following works [2-5].

The central idea that led to this article is the idea of defining an operation between complete theories. As
far as we know, the first source related to this idea that we were able to find is the work [6]. We would like
to note that interest in this topic appeared after the reports of M.I. Bekenov [7] and A.M. Nurakunov (8] at
various conferences, where they informed us about their achievements in the study of the algebra of theories
concerning the operation introduced in [6, 9].

The concept of elementary equivalence between models of a complete theory is an important tool for compari-
ng the similarity of these models, and one of the classical examples of applying this notion to algebra is the
Keisler-Shelach theorem on the isomorphism of some ultrapower of elementarily equivalent algebras with each
other [10; 363]. In [9] it was shown that elementary equivalence is preserved concerning the Cartesian product.
Thus, the above operation, given on theories, preserves elementary equivalence.

The concept of cosemanticness [11; 867] is a generalization of the concept of elementary equivalence. And
this concept is directly related to the study of the model-theoretical properties of the Jonsson theory. As follows
from the definition, Jonsson theories are, generally speaking, incomplete, so we cannot directly transfer the
concept of an operation between Jonsson theories as a Cartesian product of their models, as announced in the
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above reports [7], [8]. In particular, it should be noted that we are not working with the entire class of models of
the fixed Jonsson theory, but only with the class of their existentially closed models. And there are 3 reasons for
this: 1) as is well known from the definition of Jonsson’s theory, any of its models is isomorphically embedded
in some existentially closed model of this theory; 2) in the case of the perfectness of the considered Jonsson
theory the class of its existentially closed models coincides with the class of all models of the center of considered
Jonsson theory; 3) the semantic model of the considered Jonsson theory is an existentially closed model of this
theory. Therefore, we will consider the concept of cosemanticness between the existentially closed models of this
Jonsson theory.

The next aspect of the difference between our approach to the algebra of the considered Jonsson theories
from the statement of the problem in the reports [7], [§] is the fact that we will deal with central types of a
fixed Jonsson spectrum, that is, we will work in some enrichment of the original language.

The concept of a Jonsson spectrum was directly related to the concept of cosemanticness, both between
models and theories. The definition of cosemanticness between models and between theories can be found in
the following reference [12]. Some interest is the consideration of special definable subsets of the semantic model
fixed Jonsson theory. In this regard, we draw the reader’s attention to the following articles [13-15], which use
various approaches in adapting the classical concepts of the model theory of arising in the study of complete
theories to Jonsson theories.

In [6], the product of two theories was considered, and it was shown that this product preserves the stability
properties in the product, if such are the factors.

It is well known that the concept of cosemanticness generalizes the concept of elementary equivalence, that
is, if two models of some Jonsson theory of an arbitrary signature are elementarily equivalent to each other,
then they are cosemantic to each other. Moreover, the notion of cosemanticness of two models is related to the
notion of a Jonsson spectrum as follows: models At B if JSp(A) = JSp(B).

Our task in this article is to adapt the above properties of the considered algebra of complete theories to
study the model-theoretical properties of some fixed Jonsson theory.

Using the fact that the Jonsson theory T is a special case of inductive theories, we note that the class Er is
always not empty, and also that in inductive theory any model from the class ModT is isomorphically embedded
into some model from the class Er.

1 The outer and inner worlds of the existentially closed model of the Jonsson theory

The following definition defines the inner world (IWr(A)) of the model A of the Jonsson theory T when
A€ Er.

Definition 1. Let T be an arbitrary Jonsson theory. IWr(A) = {A’ € Ep| f is isomorphism, f : A’ — A,
A € Er} is called the inner world of the model A for T.

The following definition defines the outer world (OWr(A)) of the model A of the Jonsson theory 7' when
A€ Er.

Definition 2. Let T be an arbitrary Jonsson theory. OWrp(A) = {B € Ep : there exist A’ = A, A’ C B} is
called the outer world of the model A for T'.

And just the world of the existentially closed model A will be the following set

WT(A) = IWT(A> U OWT(A)

Note that the above definitions can connect two different existentially closed models in the case of a convex
theory. As the following theorem is true.

Theorem 1. Let T be the perfect, strong convex Jonsson theory. Since for any models A, B € Er the following
is true:

1) OWr(A) N OWr(B) # 0,

2) IWrp(A) N IWr(B) # 0.

Proof. By virtue of the perfectness of the theory T', Er = ModT™. And all existentially closed models of the
theory T are models of the center of the theory T, therefore property 1) is true due to the fact that models A
and B are existentially closed submodels of the semantic model C', where C' — semantic model of the theory T
Due to the strongly convexity of the theory T', the intersection of any two models is not empty. Condition 2) is
trivial and is performed due to the joint embedding property (JEP) of the theory T. In particular, the model
C satisfies these conditions due to the T universality of the model C.
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2 The \-comparison of two ezistentially closed models

In model theory, the formulation of the following problem is well known, which is called the Schroder-
Bernstein problem (SB) [16]. This question concerns the isomorphism of two structures, which are mutually
elementary embedded in each other. This topic was adapted to the study of Jonsson theories in the form of
a JSB-problem. In particular, one can refer to [11], where the JSB-problem is studied in the framework of
Jonsson Abelian groups.

In this section, we will consider a special case of this problem, namely, the A-comparison of two existentially
closed models of Jonsson theory.

Definition 3. Let T be a Jonsson theory. Let w < A < u, A and B be existentially closed models of the
theory T. |A| = |B| = |p|. Models A and B will be called the A-comparable if for any existentially closed
submodel A’ of a model A, such that |A’| < A, it is true that A’ is an existentially closed submodel of B, and
for any existentially closed submodel B’ of a model B, such that |B’| < A, it is true that B’ is an existentially
closed submodel of A.

It is clear that the above definition defines an equivalence relation on the set of all existentially closed models
of the considered Jonsson theory. Therefore, the following spectral definition of the number of model classes
makes sense.

Definition 4. Let T be a Jonsson theory, w < A < pu. N (E%” ) calculates the number of classes of existentially
closed models of Jonsson theory of cardinality u concerning the A-comparison relation.

Definition 5. Let IW2(A) be the set of all models from IWr(A), whose cardinality does not exceed .

Theorem 2. Let T be 3—complete, Jonsson theory, and for some w < A <y holds N (E%“ ) = 1. Then the
theory T is model complete.

Proof. Let there exist w < A < pu, such that N(Ej)l’“) = 1. It means that for any two models A, B,
|A| = |B| = |u|, A, B € Ex, IWp(A) = IWA(B). Using the fact that all models from IW(A) are isomorphic
to each other due to the condition N (E%“ ) =1, we fix an isomorphism between any two models M7, My from
IWA(A) and IWA(B). Further, in view of the 3-completeness of the theory T and the k*-homogeneity of the
semantic model C' of the theory T, we can extend this isomorphism to an automorphism C.It follows that the
outer worlds are OWr(My) | A = OWrp(Mz) | B. Since Wp(My) = Wr(Ms), we have that A = B. Those in
cardinality p he theory T' in the class Er has only one model up to isomorphism, the theory 7T is p-categorical,
which means that it is T-perfect. In this case, that T* is a model companion of the theory T', and respectively,
T* is model complete.

Let us give the necessary definitions of concepts from the above sources and list the results announced in
the reports [7], [8].

In what follows, let T' be some fixed perfect Jonsson theory, C' is a semantic model of the theory 7.

The product of two complete theories in an arbitrary first-order language L is defined as follows.

Let us give the definition of a product of fixed mutually model-consistent Jonsson theories in a countable
language of an arbitrary signature o.

Definition 6. Let Ty, T» be Jonsson theories and 77, To mutually model-consistent.Then we define T} x T5 as
the following theory: Thys(Cy x Cy), where C, Cy are semantic models of Jonsson theories Ty, Tb, respectively
in cardinality 2% where k > w.

In particular, if we consider Jonsson’s horn theory, then since it is not necessarily complete, we can isolate
all of its completion. And as an example of an operation for complete theories, we can consider an operation
between completions on the set of all completions.

Due to the fact that the semantic model of some Jonsson theory, which specifies the cosemanticness of these
two theories, is existentially closed, it does not yet follow that the Cartesian product of two existentially closed
submodels of the semantic model will be an existentially closed submodel of this semantic model.

If X is an arbitrary definable subset of the semantic model C of the Jonsson theory T and its closure
c(X) = M in some pregeometry given on the Boolean C, then the following Jonsson theory is Thys(M),
denoted by Fr(X), we will call a fragment in the theory T. It is easy to see that if M € Erp, then Fr(X) is
always Jonsson theory. In this article, we do not consider the content of the set X.

Let Fr(C) denote the set of all fragments in the theory T

Definition 7. A Jonsson theory T is called totally model-consistent if any of its two fragments Fr(Xy) ,
Fr(Xs) € Fr(C) are mutually model-consistent, where X, X5 are some definable subsets of C.

It seems to us a great prospect is filled with real meaning that the concept of definability of a subset of
the semantic model through the concept of ¢(x)-set. For example, when ¢(z) expresses: AP A-transcendence,
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various kinds of atomicity and primeness, strongly minimality, Jonssonness. And finally, the description of the
closure of the y(x)-set will be obtained through the ¢(x)-rheostat [17].

In what follows, we will work within the framework of a fixed totally model-consistent Jonsson theory. It is
clear that in this case, the question arises: is the cosemanticness class of Jonsson theories perfect if its center is
model-consistent? That is, the question arises: in which case of the center will the following theorem be true?

Theorem 3. If the fixed center of some cosemanticness class of the Jonsson spectrum is totally model-
consistent, then its semantic model is saturated.

The essence of the question lies in filling with the meaning of the word fixed.

Definition 8. For each fragment V from the Jonsson theory T select the following set NV = {A| A €
€ Fr(C), AxV =V} Let D C Fr(C). If D= NV for some V € Fr(C), then D is called a definable set of
the theory V.

Let Ay, Ag, ... A, A € Fr(C).

Consequence 1. For any A € Fr(C), NA is non-empty and closed with respect to finite products.

Proof. E is the theory of one-element model, then £ x A = A. Hence, NA is not empty. Let Ay,..., A, be
from NA, then Ay x ... x A, x A=A, that is, closed with respect to finite products.

Remark 1. Generally speaking, the theory A can not belong to NA, and NA can not be closed with respect
to infinite products, and there are various V1, Vs, such that NV, = NV, that is, they have the same definable
set N.

Definition 9. If A1 x Ay = A,, then we will write Ay absorbs Aj. A is called an idempotent if A x A = A.

Definition 10. A set D C Fr(C) is called a definable idempotent if there exists an idempotent A, such that
NA=D.

Jonsson’s version of Weinstein’s theorem [10; 416].

Theorem 4. Let A, B, C € Ep. If A< (A x B x (), then A (A x B) (x is cosmanticness of models).

Proof. The elementary equivalence of the two models implies that they are cosemantic.

Theorem 5. If A1 = A1 x Ay x Ag, then Ay = Ay x As.

Proof. Follows from Theorem 5 and Theorem 4.

Theorem 6 (Vaught [10; 403]). A sentence in the language L is stable with respect to infinite direct products
of algebraic systems if it is stable with respect to any finite subproducts of this infinite product.

Theorem 7. It D C Fr(C), and D is closed under infinite products, then there is a unique idempotent
A € D, that absorbs any element from D.

For example, the set of all theories that are complete extensions of the theory of some quasivariety are
absorbed by the corresponding idempotent, but this idempotent may not define this set.

Theorem 8. Let D C Fr(C), and D is a definable set closed with respect to infinite products, then there is
a unique idempotent A € D such that D is definable by this idempotent.

Proof. Let D = NA for some theoryA. By Theorem 7, there is an idempotent Ao, which absorbs all
elements from D. Idempotent A, defines the set D. Indeed, if for some theory A; holds Ay x A1 = As, then
A x Ay x Ay = A. This means that A x A; = A. That is, A; € D.

Theorem 9. If A is idempotent, then its any power is A¥ = A.

Proof. The proof follows from the above definitions.

Theorem 10. If A is idempotent, then NA is closed with respect to the products.

Proof. Let N C NA and N = {A;|i € I}. Take the product of all A; € N. We denote this product by P.
Since A is idempotent, we can write A = AXAX... = (A XA) X (AaxA)X... = A1 xAgx...XxAXA = PxA.
To ectb P € NA.

If we use the well-known theorem: ,For any families {A4;|7 € I}, {B;|i € I} of algebraic systems and any
filter D over I, holds I;cr(A4; X B;)/D =1;c1A;/D x ;e B;/D”. The following is true.

All the remaining statements in this section (Theorem 11-17, Corollary 2-3) are Jonsson analogs of the
corresponding results from the unpublished paper [18].

Theorem 11. If A is idempotent, then NA is an axiomatizable theory.

Theorem 12. Let Id = {A| A € Fr(C), A—idempotent}. Id with the product operation forms a commutative
semigroup of idempotents with identity.

Corollary 2. The semigroup of idempotents H is isomorphically embeddable into a suitable power of the
semigroup J, where J is the semigroup with base set {0,1} and the corresponding operation.

Thus, it is possible to represent idempotents as sequences of zeros and ones.

Definition 11. We will write A; < Ao, if and only if A; x Ay = As.

Corollary 3. The relation < on the set F'r(C) is a partial order with the largest and the smallest elements.

Theorem 13. Let Ay, As € Id. The set NV N NV is definable by an idempotent.
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Theorem 14. Let Al, AQ, A3 € Id and Al < Ag, AQ < A3. Then Al X Ay < Ag.

Definition 12. On the set Id we introduce the operations of union and intersection. Let Ay, Ay € Id.
AL UAy = A1 X Ag, and Ay NAy = A, where A is from the proof of Theorem 13.

Theorem 15. The set Id with operations U and N forms a complete lattice.

Theorem 16. Each variety is associated with its unique defining idempotent.

Theorem 17. The set of definable quasivarieties with respect to the introduced operations U and N form a
complete lattice.

8 An algebra of the central types

Let us give the necessary definitions related to a special kind of enrichment of the Jonsson theory, which
preserves certain properties. Within the framework of such enrichment, as a consequence of the laws of the logic
of the predicate calculus, instead of the considered some complete theory, we can obtain a maximally consistent
set of formulas, i.e. some complete 1-type. We will call this type the central type.

The main idea of this section is to use, as an application to central types of fixed enrichment, the properties
of the algebra of Jonsson theories with respect to the products of theories.

Let T be a fixed hereditary Jonsson theory in the language L of some signature o, C is a semantic model
of this theory, o' = o |J{P} J{c}, take the set A, as a subset of C.

Let T=TJThys (C, ca)ye s U{P ()} U{P,C}. Here {P,C} is an infinite set of sentences that reflect the
following fact: ,,An interpretation of the symbol P will be an existentially closed submodel on L of signature
o', thus, we obtain that the interpretation of the symbol P is a solution of the equation P(C) = M, M € Er
in L of signature o’.

Due to the fact that not all Jonsson theories in enrichment preserve the property of being a Jonsson theory,
we will work in the class of hereditary Jonsson theories. “What is it?” - give the following definitions.

Definition 13. An enrichment T of the Jonsson theory T is said to be permissible if any V-type (it mean
that V subset of language L, and any formula from this type belongs to V) in this enrichment is definable in
the framework of Tr-stability.

Definition 14. The Jonsson theory is said to be hereditary, if in any of its permissible enrichment, any
expansion of it in this enrichment will be Jonsson theory.

Let T be a fixed hereditary Jonsson theory that is totally model-consistent, C' its semantic model, Fr(C)
the set of all fragments in the theory T'. On the set F'r(C) we define the operation (x), which will be the algebra
(Fr(C), x). And it forms a commutative semigroup of idempotents with unity, and the set of idempotents with
operations U and N forms a complete lattice. Also applicable to the algebra (Fr(C), x), where C' is the semantic
model of the theory T. And we have the following results when considering this algebra.

The operation of multiplying fragments from Fr(C) induces the operation of multiplication in Fr(C), and
we can notice that Fr(C), as well as Fr(C), is a commutative semigroup for multiplication of fragments in the
theory T.

Since the considered theory T is totally model-consistent, the product of two fragments from Fr(C) is
a theory from Fr(C), that is, Fr(C) is the cosemantic class of the Jonsson spectrum of some model of the
signature of the theory 7.

It is clear that this topic, namely, the algebraization of the field of activity of work with central types, is
closely to the questions arising in the study of Jonsson’s theories. Let’s dwell on one of them. This question
concerns hybrids of Jonsson theories [19-21].

It is easy to see from the definitions of the product of theories and hybrids that these concepts coincide if the
product of two Jonsson theories gives a Jonsson theory. In this case, the product of the central types of Jonsson
theories differs from the concept of a hybrid in the following way: 1) to define the central type, some enrichment
of the signature is necessary, difference to hybrids of Jonsson theories; 2) a hybrid of Jonsson’s theories can be
of 2 types (the first and second types), while the second type of hybrid depends on the Jonsson theories of two
different signatures, difference to the product of Jonsson theories.
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O3apa Mmoaeabai-yityieciMal (pparMeHTTEpPIiHIH,
EeHTPAJABIK TUIITEPIHIH aJaredpachl

MakaJstazma e3apa Momeabai-yitaeciMai dpparMeHTTepIis, NeHTPAIBIK TUIITEPIHIH aJIreOpachIHbIH, MOIEIb-
Ji-TeOPEeTUKAJBIK KacueTTepi KapacThIpbliaraH. lleHTpa/ablK »KoHe HOHCOHJBIK TEOPUSHBIH, OaflbITHIIFAH
CHTHATYPACBIHBIH, 6ailJTaHBICTAPDI /18, KOPCETIITEH KoHe OChIHIail OalbITy asiChIHIa KapaCTBIPBLIFaH Keibip
TOJIBIK, TEOPUSTHBIH, OPHBIHA aBTOPJIAP TOJIBIK, 1-TUIITI aJiFraH »KoHe OyJI TUITI NEHTPAJIIBIK, THII JeIl aTall, aJl
TEOPHIAP/IBIH OPHBIHA MYPAJIbl TEOPUSIAPABI KapacThiprad. By kymeic 3 Gesimre Gesinren: 1) fioncon-
JIBIK TEOPUSIHBIH, 9K3UCTEHIMAJBI TYHBIK, MOJIEIHIH CHIPTKBI YKoHe 1mKi amemaepi (6epiaren TeopusHbIH
€Ki 9K3UCTEHNIUAJIBl TYHBIK MOJEIBAEP/IH OSIeMIEPIHIH apachlHAAFbl €PEKIIENiK KAPACTBIPBLIFAH);
2) ekl 9K3UCTEHIWAIbI TYHBIK MOJebaepai A-canbicToipy (IIIpenep-Bepruireiin npobiemacs! HOHCOHIBIK,
Teopusiapel J.SB-npobieMacs TypiHge 3epTTeyre GeifimMenren); 3) NEHTPAJIBIK, THIITEP/IH aJre0pach!
(2-6emimmin mormxenepi (Fr(C), x) anrebpacsima xermipinren, myugarst C - T TeOPHSCHIHBIH CEMAHTH-
KaJIbIK, MoJiesii). Bynan 6acka Makasaia MbIHA TYXKbIPbIMIAMAJIap €Hri3lINeH: TEOPUSHBIH SK3UCTEHIINAT-
JIbI TYHBIK, MOJIEJIHIH, CBHIPTKBI 2KOHE 1mKi astemi (COHBIMEH KATap OChI MOJIGJIBIIIH, 9JIEMi), TyTac MOZEbI
yitsmeciMai HOHCOHIBIK, Teopus. 2K YMBICTBIH, HETI3r HOTHUXKECI KOPCETKEHIeH, TeOpUAIapIbIH KOOeHTiH/Tici-
He KATBICTHI HOHCOHJBIK TEOPUSJIapbIH aJredpachblHbIH KacueTTepi 6eKiTireH, 6aibIThIIFaH IEHTPAJIIBIK,
TUIITEPIHE KOCBIMINA PEeTiHJe KOJJaHbLIaIbI. Teopusaapably KeOeHTiHIici MeH TuOpuATEep/IiH, aHbIKTaMa-
JIApbIHAH, erep eKi HWOHCOHJIBIK TEeOPUSHBIH, KOOEHTIH1iCi HOHCOHIBIK TEOPHUSHBI Oepce, OYJI YPbIMIapIbIH
ColiKec KeJIeTiHJITiH OaliKay KUBIH eMecC.

Kiam cesdep: HOHCOHIBIK TEOPUSI, IIEHTPAJIBIK THITED, ¢ (X )-?KUBIH, IIIK] 0J1€M, CBIPTKBI 9JIEM, A-CAJIBICTHIPY,
TYTaC MOJENb yitaeciMai Teopusi, GparMenT, IeHTPAIIBIK, THITEP/IIH aaIredpachl, CEMAHTUKAJIBIK, MOJIE/Tb.

A.P. Emkees, H.M. Mycuna

Asredbpa 1eHTpaJbHbIX TUIIOB B3aMMHO
MO/IeJIbHO-COBMECTHBIX (pparMeHTOB

B craTbe paccMOTpeHBI TEOPETHKO-MO/IE/IBHBIE CBOICTBA aaredphl IEHTPAJIBHBIX THIIOB B3aHMHO MO/JIEJIBHO-
COBMECTHBIX (pparmeHTOB. [loKa3aHBI CBSI3W MEXKy IEHTPOM U MOHCOHOBCKOIM Teopmeil B paspenreHHOM
00OTaIeHIN CUTHATYPBI. B paMKax Takoro oboraieHus BMECTO PacCMaTPHUBAEMOil HEKOTOPOI MOJIHOMN Te-
OpHUH aBTOPBI MOTYT IIOJIyYUTh HEKOTODBINA IOJHBINA 1 TuIl, U OH OyJ/leT HA3bIBATBHCSA IEHTPAJBHBIM, IIPU
9TOM pacCMaTpUBAEMble TEOPHUU OYIyT SIBJISIThCA HAC/TeICTBEeHHbIMU. /laHHasi pabora pas3bura Ha 3 ma-
parpada: 1) BHEMHUIE ¥ BHyTPEHHUI MHUPbI 9K3UCTEHIMAILHO 3AMKHYTON MOJEIN HOHCOHOBCKOW TE€OPHH
(paccMoTpena 0COGEHHOCTD MEK 1y STHUMU MUPAMH JUIs ABYX SK3UCTEHIMAILHO 3aMKHY TBIX MOJIEJIel JTaHHOM
Teopun); 2) A-CpaBHEHHE JIBYX IK3MCTEHIMAIBHO 3aMKHYTBIX Mogenei (mpobuiema I1Ipenepa-Bepumaiina
aJANTUPOBAHA K M3YYEHUIO HOHCOHOBCKMX Teopuil B Buje J.SB-npobiembl); 3) anrebpa NEHTPAIbHBIX TH-
oB (pe3ysbrarsl Haparpada 2 nepeHocarcs miist anare6pol (F r(@), X), Tae C — 3T0 ceMaHTHYeCKas MOJIETD
TEOpUHn T). Kpome Toro, aBropamMu BBeJEHBI CJICAYIONINE MOHSITHUS: BHEIIHUN M BHYTPEHHUN MHUPBI OJHOMN
9K3UCTEHINAILHO 3aMKHYTON MOJEJN ONHON M TON 2Ke Teopum (& TakzKe MUDP ITOH MOJEJH); TOTAIHLHO
MOJEJIbHO-COBMECTHAsI MOHCOHOBCKas Teopus. 1 JIaBHBIN pe3ysIbTaT, JIOCTUTHYTHIH B paboTe, IIOKA3BIBAET,
9TO B KQUECTBE MPUJIOKEHUS K [EHTPATBHBIM TUTTAM (PUKCHPOBAHHOTO OOOTAIEHSI UCITOIb3YIOTCST CBOMCTBA
ayreOpbl HOHCOHOBCKUX TEOPUM OTHOCUTEIBLHO ITPOM3BeieHust Teopuil. Y jlerko 3aMeTuTh U3 Onpejie/IeHni
IIPOU3BEJIEHUS] TEOPUY U I'MOPHUIOB, YTO STU IIOHATHUS COBIIQJIAIOT, €CJIU IIPOU3BENIEHNE JIBYX NOHCOHOBCKUX
TeOpHUil 1aeT HOHCOHOBCKYIO TEOPHIO.

Kmouesvie ca06a: HOHCOHOBCKAS TEOPHs, IIEHTPAJIBHBIE TUMbI, ¢(T)-MHOXKECTBO, BHEIIHUN MUD, BHYTDPEH-
HUI MUD, A\-CPaBHEHHUE, TOTAJIbHO MOJEIbHO-COBMECTHASI T€OpHsi, GPArMeHT, ajiredpa MeHTPATbHBIX TUIIOB,
ceMaHTHYecKasl MO/Ieb.
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An essential base of the central types of the convex theory

In this paper, we consider the model-theoretical properties of the essential base of the central types of
convex theory. Also shows the connection between the center and Jonsson theory in permissible enrichment
signatures. Moreover, the theories under consideration are hereditary. This article is divided into 2 sections:
1) an essential types and an essential base of central types (in this case, the concepts of an essential type and
an essential base are defined using the Rudin-Keisler order on the set of central types of some hereditary
Jonsson theory in the permissible enrichment); 2) the atomicity and the primeness of ¢(z)-sets. In this
paper, new concepts are introduced: the ¢(x)-Jonsson set, the APA-set, the AP A-existentially closed
model, the p(z)-convex theory, the ¢(x)-transcendental theory, the AP A-transcendental theory. One of the
ideas of this article refers to the fact that in the work of Mustafin T.G. it was noticed that any universal
model of a quasi-transcendental theory with a strong base is saturated, but we generalized this result taking
into account that: the concept of quasi-transcendence will be replaced by the ¢(z)-transcendence, where
o(z) defines some Jonsson set; and the notion of a strong base is replaced by the notion of an essential
base, but in a permissible enrichment of the hereditary Jonsson theory. The main result of our work shows
that the number of fragments obtained under a closure of an algebraic or definable type does not exceed
the number of homogeneous models of a some Jonsson theory, which is obtained as a result of a permissible
enrichment of the hereditary Jonsson theory.

Keywords: Jonsson theory, central types, essential base, p(z)-set, p(z)-convex theory, ¢(z)-transcendental
theory, AP A-transcendental theory, fragment.

This article is devoted to the study of the central types of a special case of the convex theory [1]. Besides,
the concept of convexity is considered class of Jonsson theories [2; 80]. Many works were devoted to the study of
Jonsson theories: the general properties of Jonsson theories, for example, were studied in the following papers
[3-7]; results concerning various extensions of Jonsson theories, including companions, can be found in [8, 9].
When studying the properties of elements and subsets of the semantic model of the fixed Jonsson theory, many
new concepts and problems related to them have arisen. First of all, it should be noted the concept of a Jonsson
set, which is a generalization of the concept of a basis in a linear space. If we consider a linear space as a special
case of a module, then our interest in studying various refinements of the concept of a Jonsson set becomes clear.
Moreover, in [10, 11], related to the concept of a certain dimension, various generalizations of the well-known
model-theoretic results were obtained. The concept of dimension is the cornerstone of all mathematics, and
therefore finding new implementations of the ideas of dimension is an urgent task.

On the other hand, one of the classical questions of the Model Theory is the question of the spectrum of
models, that is, the number of models in a particular cardinality up to isomorphism. In the study of Jonsson
theories, the concept of a Jonsson spectrum was considered [12]. In this case, we have some syntactic invariant of
an arbitrary model of an arbitrary signature. Namely, the number of Jonsson theories whose model is the given
model under consideration up to cosemanticness [13]. It turned out that within the framework of studying the
Jonsson spectrum one can consider the well-known classical question: let K be a certain class of models of an
arbitrary signature o of a first-order language L and L is the set of all sentences of this language, i.e. Ly C L and
I’ C Lg. If we consider the Thr(K) theory of the class K, where Thr(K) = {¢ € T : VA € Kfollows that A = ¢}
and consider the class of models of this theory M = Mod(ThrK), then the connection between the classes M
and K is the classical formulation of the question of the axiomatizability of the class K. In the case when the
theory is not complete (and Jonsson theories, generally speaking, are like that), this class of problems becomes
difficult enough for a complete description. Another difficulty in the study of Jonsson theories is the fact that
the well-described part is only a small fraction of the class of all Jonsson theories of the fixed signature. And

“Corresponding author.
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this part of the class in question consists of a union of classes consisting of perfect Jonsson theories. That is
theories that have a model companion and their class of existentially closed models satisfy the above classical
problem of axiomatizability of this class.

The concept of the central type is associated with the concept of hereditary enrichment in Jonsson’s theory
[14, 15]. The concept of heredity at the moment does not have a complete description, except for some intuitive
guesses. We took one of them from the ideas of constructing a pregeometry [16] on the Boolean of the semantic
model of a fixed Jonsson theory. The next idea relates to the fact that in [17] it was noted that the saturation
of any universal model of quasi-transcendental theory with a strong base, as well as, the superstability of such
theories (Theorem 2).

In this paper, the notion of quasi-transcendence will be replaced by ¢(x)-transcendence, where ¢(x) defines
some Jonsson set [13; 278], and the notion of a strong base is replaced by the notion of an essential base but in
permissible enrichment of the hereditary Jonsson theory.

1 An essential types and an essential base of central types

Before we give the necessary definitions, we recall how we get the central type.

Let L be a first-order language, T' be an arbitrary hereditary Jonsson theory in L of the signature o, C be
a semantic model of the theory T, A C C, o/ = o J{P} U{c}.

Let T=TJThv3 (C, ca) e s U{P (¢)} U{P,C}, where {P,C} is an infinite set of sentences expressing the
fact that the interpretation of the symbol P is an existentially closed submodel in the language of signature o”.
That is, the interpretation of the symbol P is a solution to the following equation P(C) = M, M € Er in the
language of the signature o’.

Since we know an example of the fact that the Jonsson theory in enrichment with a unary predicate does
not preserve the property of amalgam, and the central type is obtained from the center of the Jonsson theory
in the enriched language, we need the following definitions.

Definition 1. An enrichment T of the Jonsson theory T is said to be permissible if any V-type (it mean that
V subset of language L, and any formula from this type belongs to V) in this enrichment is definable in the
framework of T'r-stability.

Definition 2. The Jonsson theory is said to be hereditary, if in any of its permissible enrichment, it preserves
the Jonssonness.

Consider all extensions of the theory T in the language of s1gnature o’. Since T is a hereditary theory, then
T will be a Jonsson theory, so it has a center, and we denote it by T , and this center is equal to one of above
completions theory T. When restricting the signature o’ to o U { P}, accordlng to the laws of first-order logic,
the constant ¢ no longer belongs to this signature, and we can replace this constant with a variable, for example,
2. And then the theory T" becomes a complete 1-type for the variable x. We will call this type the central type
of the theory T in the above enrichment.

In what follows, we define the concept of an essential type and an essential base using the Rudin-Keisler
order on the set of central types of some hereditary Jonsson theory in a permissible enrichment.

Definition 3. Type p € S(Vl)(X) is called essential if for any set Y, Y C N, N € Ep, such that X CY in T
exists only unique type ¢q € S(vl )(Y) and the type ¢ is a J-nonforking extension of type p.

Let p,q € S(vl)(X), 2A € Er and X C A. The relation p <4 ¢ is means that for any model B € Er, such that
B D 2, from the realizability of ¢ in B\ A implies the realizability of p in B\ A. The relation p = ¢ means that
for any model 2 € Ep, X C A, has p <4 q and ¢ <4 p. We denote the set {g|q € S(vl)(X),p = ¢} by [p], and the
set {[p]lp € S(Vl)(X)} denote by S(Vl)[X]. We write [p] <4 [q], if p <4 g. The types p, q are called independent if
for any 2 € Ep, X C A, don’t have a place neither p <4 ¢, nor ¢ <4 p. If p and ¢ are independent, then we
say that [p] and [¢] are independent.

The following definition gives the concept of a basis among the above types.

Definition 4. The set B = {[p;] € SO [X]|i € I} is called base for SO [X] if

(1) [p;] and [g;] independent for ¢ # j;

(2) for any [q] € S(Vl)[X] and 20 € Ep, X C A, exists ¢ € I, such that [p;] <4 [q]-

Definition 5. The base of the theory T is the base for S(V1 ) [@] (if it exists). The base B of T is called essential
if for any [p] € B exists an essential type ¢ € [p].

Let us define the notion of pregeometry on the Boolean of subsets of the semantic model of a fixed Jonsson
theory T'.
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Let T be a some Jonsson theory, C' be its semantic model.

Definition 6. Let C be as above and let cl: P(C') — P(C) be an operator on the power set of C. We say
that (C,cl) is a pregeometry if the following conditions are satisfied:

i)if A C C, then A C cl(A) and cl(cl(A)) = cl(A).

ii) if A C B C C, then cl(A) C cl(B).

iii) (exchange) if A C C, a,b € C and a € cl(AU {b}), then a € cl(A), b € cl(AU {a}).

iv)(finite character) if A C C and a € cl(A), then there is a finite Ag C A such that a € cl(Ayp).

We say that A C C' is closed if cl(A) = A.

In particular, we can define the notion of strong minimality on formula subsets of existentially closed
submodels of the semantic model of a fixed Jonsson theory [13].

If D is strongly minimal, we can associate a pregeometry by defining cl(A) = acl(A) N D for A C D.

We can generalize basic ideas about independence and dimension from strongly minimal sets to arbitrary
pregeometries for any subset of fix semantic model of some Jonsson theory.

Let as call (X, cl)-Jonsson pregeometry (further J-pregeometry) if X C C, C and T as above.

Definition 7. If (X, cl) is a Jonsson pregeometry, we say that A is Jonsson independent if a ¢ cl(A\ {a})
for all @ € A and that B is a J-basis for Y if B C Y is J-independent and Y C acl(B).

Definition 8. We say that a J-pregeometry (X,cl) is J-geometry if cl(f) = 0 and cl({z}) = {«} for any
reX.

If (X,cl) is a J-pregeometry, then we can naturally define a J-geometry. Let Xog = X \ ¢l((}). Consider the
relation ~ on Xg given by a ~ b iff cl({a}) = cl({b}). By exchange, ~ is an equivalence relation. Let X be
Xo/~. Define cl on X by cl(A/) = {b/~ : b € cl(A)}.

Definition 9. Let (X, cl) be J-pregeometry. We say that (X, cl) is trivial if ¢/(A) = Yecacl{a} for any A C X.
We say that (X, ¢l) is modular if for any finite-dimensional closed A, B C X

dim(AU B) = dimA + dimB — dim(AN B)

Definition 10. We say that (X, ¢l) is locally modular if (X, ¢l,) is modular for some a € X.

Definition 11. If X = C and (X, ¢l) is a modular, then the Jonsson theory T is called modular.

Let in what follows the operator ¢l is either an algebraic or a definable closure of some ¢(x)-set, that is, if C
is a semantic model of some Jonsson theory, and ¢(C) = A, then cl(A) = M € Er, M = M1UM>, My = acl(A),
My = dcl(A).

Definition 12. Let X C C. We will say that a set X is V-cl-Jonsson subset of C, if X satisfies the following
conditions:

1) X is V-definable set (this means that there is a formula from V, the solution of which in the C' is the
set X, where V C L, that is V is a view of formula, for example 3,V,V3 and so on.);

2) cl(X) = M, M € Er, where cl is some closure operator defining a pregeometry over C' (for example
cl = acl or ¢l = dcl).

It is clear that the o (z)-Jonsson set is a special case of Definition 12, i.e. these are elements of the semantic
model that are solutions of the formula ¢(x) in the model C.

And in particular, p(z)-set is called a ¢(x)-Jonsson set in the theory T if the following definition holds.

Definition 13. Let X C C. We will say that a set X is ¢(z)-Jonsson subset of C, if X satisfies the following
conditions:

1) X is ¢(x)-definable set (this means that there is a formula from ¢(z), the solution of which in the C' is
the set X, where ¢(x) C L, that is ¢(z) is a view of formula 3);

2) cl(X) = M, M € Er, where cl is some closure operator defining a pregeometry over C' (for example
el = acl or ¢l = del).

Any subset of the semantic model is called the set X in the Jonsson theory T.

2 The atomicity and the primeness of ¢(x)-sets

A model-theoretical property of a model is said to be an APA-property if it satisfies the properties of
algebraic primeness and atomicity in the sense of [18]. For example, let us give an important definition of
AP A-transcendence.

Definition 14. A set X is called an APA-set if it is ¢(x)-Jonsson set and M is algebraically prime and
(X1, ¥1)-atomic model, where M = cl(X), M € Er. And in this case the model M is called an AP A-existentially
closed model.
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And accordingly, an analog of the quasi-transcendental theory from [17] is the notion of the AP A-trans-
cendental theory.

Definition 15. A Jonsson theory T is called AP A-transcendental, if for any AP A-set of the X in the theory
T there exist AP A-existentially closed model M, such that c¢l(X) = M.

We recall the classical definition of a convex theory belongs to A. Robinson.

Definition 16. A theory T is called convex if for any its model A and for any family {B; | ¢ € I} of
substructures of A, which are models of the theory T, the intersection (1,.; B; is a model of T', provided it is
non-empty. If in addition such an intersection is never empty, then T is called strongly convex.

The following definition selects a rather interesting subclass in the class of convex Jonsson theories, which
is defined by the closure of some formula (z).

Definition 17. The theory T will be called ¢(z)-convex if:

1) it is convex in the classical sense;

2) for any existentially closed model N of this theory, there is a theoretical set A such that cl(A) = NB;,

3
B; <5, N and exists ¢p(x): p(C) = A.

Let C be semantic model, M; < C, i € I. There are 2 possible cases.

1 case. M; are existentially closed models.

2 case. M; are not existentially closed models. Then, by the Lowenheim-Sculem up theorem, there exist
elementary extensions M/ = M;, which, according to Proposition 8.12 [2; 97| will already be existentially closed
models.

This means that in any case, there are models M; that will be existentially closed.

Summarizing the above, we can consider a more general situation, defining the next class of theories.

Definition 18. Let T be the Jonsson theory. T is called the ¢(x)-transcendental if on any (x)-set there
is (V1, Va)-atomic and h-prime model, where V1,Vy C L and h is an arbitrary homomorphism between the
models of the theory T

We denote Thys(M) by Fr(A) and call it a fragment of the Jonsson theory T, where C is the semantic
model of this theory, A C C, M = cl(A), M € Er.

The following theorem is the main result of this article. This theorem shows that the number of fragments
obtained under a closure of an algebraic or definable type does not exceed the number of homogeneous models
of some Jonsson theory, which is obtained as a result of a permissible enrichment of the hereditary Jonsson
theory.

Theorem. Let T be hereditary, complete for 3-sentences, ¢(z)-convex, p(x)-transcendental Jonsson theory
with an essential base of central types in its fragments, where ¢(x) defines a AP A-subset of the semantic model
C. Then there is a cardinal p such that the number of fragments is determined by the following formula

_ 1, at condition I =1 & a > 0;
H(a7 T) = min(p,Rey) .
N, 7/ in other cases.
where H (o, T) is the number of homogeneous models of the theory T.
Proof. Consider the enrichment of the language of the theory T with a new constant symbol ¢ and a new
unary predicate symbol p. Let us write one of the completions of the theory T in the following form:

T= TUThVH (Cv Ca)aeA U {P (C)} U {P’ g} .

Let {P,C} be the set of sentences defining the N model,where N € Ep, N is the core, (X1, %;)-atomic
model. Such a model exists due to ¢(x)-convexity of the theory T'. Consider all existentially closed extensions
of the model N. It is easy to see that the class of all these extensions does not exceed Er. Moreover, due to
the convexity of the theory T, this class coincides with E7. To count the number of models Er, we will use
the central type technique. Let M; be an arbitrary existentially closed extension of the model N. Consider the
central type of models M; . To do this, we will consider the fragments Thys(M;), denote them T;. This is a
Jonsson theory in the language of the theory T', since M; € Ep. Consider

Tr,=TUThya (Cias €a)ge s U{P (€)}U{Prs,, €}, where {Par,, C} is a set sentences reflecting the fact
that N =<x, M;. Due to the heredity of the T; theory, the theory TMi is a Jonsson theory, and it has a
corresponding center, we denote it T}k\/[i. By virtue of the laws of first-order logic, we can replace the constant
symbol ¢ with the symbol of the variable z, if in the new language we will leave only the predicate symbol P.
Then instead of the center Tjwi we get some complete type in the old language with the predicate symbol P.
Let’s denote this type by pf§,.. This is the central type of the theory T,
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There will be as many such central types as there are M; models. On this set of central types, i.e. obtained
for each model M; € Er, we consider the essential base of essential central types. And concerning it we use the
results of Theorems 1 and 2 from [17]; in the language of central types, this means that each T; is a perfect
Jonsson theory, since Theorem 2 proved the saturation of the universal model for a quasi-transcendental theory
with a strong base. Each semantic model of Jonsson theory is universal in the sense of isomorphic embedding
and relative to 3-formulas, and due to the 3-completeness of the T' theory, we can transfer the proof of saturation
for 3-types. This means that the theories T} are perfect Jonsson theories, due to heredity, Ty, are also perfect
Jonsson theories, so their centers are model complete, which means that all embeddings between models are
elementary. In particular, all algebraically prime models are prime models, and (¥, 3;)-atomic models are
atomic models of the theory T}kwi. Therefore, there will be as many central types as there are semantic models of
theories T;, but all these models are existentially closed models, like the semantic models of Jonsson theories. By
virtue of the perfectness of Jonsson’s theory Tj, the class E is equivalent to the class M odT: . Because of the
above, we can conclude that the number of central types for the Jonsson theory is exactly equal to the number
of universally homogeneous models, and we can apply the result of Theorem 6 from [17], concerning only the
spectrum of homogeneous models, which uniquely determines the criterion for the Jonsson theory, namely, a
theory is Jonsson if and only if it has a universally homogeneous model of sufficient power.
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A.P. Emikees, M.T. Omaposa

JleHec TeopusHBIH IEeHTPAJIABIK, TUMNTEPIiHiH ejeyJi 6a3achl

MakaJjaga JIoHeC TEOPUSHBIH IeHTPAJIIBIK, TUIITEPIHIH ejiey i 0a3aChbIHbIH, MOJIE/IbIi-TEOPETHUKAJIBIK, KACH-
eTTepi KapacThIpbLIFaH. PyKcaT eriireH GalibITHIIFAH CUTHATYPaJa IEHTP MeH WOHCOHJIBIK, TEOPHUsIHBIH
Gaittanbichl KopceTiiren. COHBIMEH KATap KAPACTBIPBLIBII OTHIPFAH TEOPUsIAp MYPAaJIbl Teopusijaap 00-
spin Tabbutagsl. Ockl »kyMbic 2 maparpadka Gesinren: 1) eseysi THITED KOHE HEHTPAIIBIK, THITEPIIH
esieyiii Gasacel (CoHbIMEH Gipre esieysi T IeH eseyri 6a3a yreiMaapsl Pyamu-Keiicaepais peri apkplibt
AHBIKTAJIAIBI, SIFHU KeHOIp MypaJsibl HOHCOHIBIK, TEOPUSHBIH, PYKCAT €TIIreH OalbITybIHIa IEHTPAJIIBIK, TH-
ITEP/IH KUBIHBIHAA); 2) ¢(T) — >KUBIHHBIH, aTOMBIFBI YKOHE YKalIbLIbIFbl. Kesecl xKaHa YFBIMIAP €HIi-
sliren: ¢(x) — HoHcOHIBIK )XublH, APA — »wublH, APA — 3K3uCTeHIMOHAJ(bI TYHBIK Mozuenb, ¢(z) —
nmenec Teopus, p(x) — TpancuengentTi Teopuss, APA — Tpancuengentti Teopus. OCbl MAKAJIAHBLIH Oip
naesicel T.F. MycradunHin eHOeringe KBa3UTPAHCIIEHIEHTTI TEOPUSHDBIH, Ke3-KeJIreH oMbebar Moiesi Kar-
ThI 6a3aMeH KAHBIKKAH €KEHJIIr JIel aTall OTiITeH JIereH JepeKKe KATBICTHI, bipak Makaja aBTopJapbl Gy
HOTHZKEH] €CKepE OTBIPBII YKAJIBLIAY KACAIbl: KBA3UTPAHCIIEHICHTTIIIK YFBIMBI (0 )-TPaHCIEHACHTTLTIKKE
ayBICTBIPBLUIABI, MYHIAFBL ©(2) Keibip HOHCOHIBIK KUBIHIBI AHBIKTAMIBL; KOHE KATTHL 6a3a YFBIMBI €JIey-
Jii 6a3a YFBIMBIMEH aJIMACTBIPBLIBI, OipakK MypaJibl HOHCOHIBIK TEOPUSIHBIH PYKCAT €TLIreH OailbITyBIHIA.
2KymbicToiH, Heri3ri HOTHKECI KOPCETKeH e, aredpaiblK, HeMece aHBIKTAJATBIH TUITIH TYHRBIKTATYBI Ke-
3iHjIe aJIbIHFAH (PpParMeHTTep CAaHbl MYpaJbl HOHCOH/IBIK TEOPUSHBIH, PYKCAT €TiJireH OANbITY HOTHKECiH e
aJBIHFaH Keiibip HOHCOHIBIK TEOPUSIHBIH GIPTEKTI MOJIE/IbIEPiHIH CAHBIHAH ACIAIh.

Kiam ceadep: HOHCOHIBIK TEOPHUsl, NEHTPAJJIBIK TUIITED, eseyii 6a3a, ¢ (x)-xubH, ¢(z)-nenec Teopusd, o(z)-
TpaHCUEeHIeHTTi Teopus, AP A-TpaHcleHIenTTi Teopusi, (pparMent.

A.P. Emkees, M.T. OmapoBa

CymecTBennas 6a3a MeHTPAJbHBIX TUIMOB BBIILYKJIO Teopumn

B crarhe paccMOTpeHBI TEOPETUKO-MOJEIbHBIE CBOMICTBA CYIIECTBEHHOM 6a3bl IEHTPAIBHBIX TUIOB BBIMYK-
qoit Teopun. [lokazaHbl CBA3M M€Ky IEHTPOM M HOHCOHOBCKOW TeOpHEl B Pa3PENIeHHOM OOOTAIlEeHUN
curHaTyphl. 1Ipu sTOM paccMmarpuBaeMble TEOPUU SIBJAIOTCA HACJIEACTBEHHbIMU. /laHHAas pabora pa3buta
Ha 2 naparpada: 1) CylecTBeHHbIe THIBI M CyLeCTBEHHasi 0a3a [EHTPAJIbHBIX THUIOB (IIPH 3TOM IIOHSI-
THUS CYIIECTBEHHOI'O TUIA U CYIIECTBEHHON 6a3bl OMPEIEsISIOTCs ¢ TOMOIIBIO mopsiaka Pynnna-Keiicaepa na
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MHOXKECTBE IEHTPAJIbHBIX TUIIOB HEKOTOPOU HAaCJIeJICTBEHHON HOHCOHOBCKOW TEOPUH B Pa3perreHHOM 000-
rameHun); 2) aTrOMHOCTb M IPOCTOTa @(x)-MHOXKeCTB. BBesieHbl HOBbIE TOHATHUS: (L) — HOHCOHOBCKOE
MHOXKecTBO; AP A — MHOXKecTBO; AP A — 5K3UCTEHINAIBHO 3aMKHYyTasl MOZEIb; ¢(Z) — BBIILYKJIAsi TEOPUST;
¢(x) — rpancnengentnas teopus; APA — TpancnennenTaas reopus. OHa U3 Wel TAHHON CTATbU OTHO-
curcd K Tomy daxty, 94ro B pabore T.I. Mycraduna 66110 3aMedeH0, 9TO JI00ast YHUBEPCAJIbHAST MOJIEh
KBa3UTPAHCIEHIEHTHON TEOPUU C CHJIbHON 6a30i1 HackleHa. ABTOPBI CTAThbu OOOOIIMIIA STOT PE3YJILTAT C
YHIETOM TOTO, 9TO MOHATHE KBA3UTPAHCIEHIEHTHOCTHU OYIET 3aMEHEHO (T )-TPAaHCIIEHIEHTHOCTBIO, Te ¢(T)
3a/laeT HEKOTOPOe HOHCOHOBCKOE MHOXKECTBO; & TOHSITHE CUJILHOM 6a3bl 3aMEHEHO MMOHATHEM CYIIECTBEHHON
6a3bl, HO B Pa3pEIIEHHOM ODOrallleHuu HACJIEICTBEHHON HOHCOHOBCKOM Teopuu. [JIaBHBIN pe3ysbTaT JaHHON
paboTBI TOKA3bIBAET, ITO UUCI0 (HPPArMEHTOB, IIOJIYIEHHBIX 10/l 3aMBIKAHUEM AJreOpandecKoro WM OIIpe-
JIeJIMMOT'O THUIIa, He INPEBOCXOUT YHUCJIa OJHOPO/HBIX MOJeJIell HEKOTOPOil IOHCOHOBCKOH Te€Opum, KOTOpas
[TOJIyYaeTcsl B Pe3yJIbTaTe Pa3pelIeHHOro o0oralleHns] HaCaeICTBEHHON HOHCOHOBCKOM T€OpUH.

Karouesuvie caosa: HOHCOHOBCKasl T€OPUsl, EHTPAJIbHbIE THIIBL, CYIleCTBeHHas! 6a3a, ¢ (T)-MHOXKeCcTBO, ¢ (T)-
BBIIIyKJIast Teopust, ¢ (x)-Tpancrenentnaa reopus, AP A-TpancnennenTaas Teopust, (DParMeHT.
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On Boundary Value Problems for a Mixed Type Fractional
Differential Equation with Caputo Operator

This article is devoted to study the boundary value problems of the first and second kind with respect
to the spatial variable for a mixed inhomogeneous differential equation of parabolic-hyperbolic type with
a fractional Caputo operator in a rectangular domain. In the study of such boundary value problems, we
abandoned the boundary value condition with respect to the first argument and instead it is used additional
gluing condition. In this case, in the justification of the unique solvability of the problems, the conditions
on the boundary domain are removed. This allowed us to weaken the criterion for the unique solvability of
boundary value problems under consideration. The solution is constructed in the form of Fourier series with
eigenfunctions corresponding to homogeneous spectral problems. Estimates for the convergence of Fourier
series are obtained as a regular solution of this mixed equation.

Keywords: Mixed differential equation, fractional order, Caputo operator, non model equation, Fourier
series, gluing conditions, unique solvability.

Introduction

The theory of boundary value problems for differential equations of mixed parabolic-hyperbolic and elliptic-
hyperbolic types, by virtue of its applied and theoretical significance, in recent years has become one of the most
important branches of the theory of partial differential equations. In 1940, F. I. Frankl discovered applications
of the Tricomi problem for the Chaplygin equation in transonic gas dynamics. Later the new applications of
mixed-type equations have been found in the theory of Laval nozzles, in plasma theory, and in other branches
of physics and mechanics.

Mathematicians began to study more often by the method of Fourier series the unique solvability and
stability of the solution of the Dirichlet and Tricomi problems for a mixed type model differential equations of
the second order

0_{ Up — Upy +02u, t >0,
T Ut —Uge +b%u, t <0

in rectangle domain Q = {(¢, ) : —p < t < ¢, 0 < x < {}. We note that in [1-3] for this kind of equations in
the rectangular domain with two gluing conditions and with a condition over the entire boundary domain were
studied. In studying the unique solvability of Dirichlet and Tricomi problems for this kind of mixed equations
there is a condition to the measure of the boundary domain. Our approach interfered with the global solvability of
the considering problem in an arbitrary rectangle. The method of Fourier series is also widely used in the works of
other authors in the study of local and nonlocal boundary value problems for differential and integro-differential
equations (see, for example, works [4-9]). The problem of the correct choice of boundary value conditions for a
wide class of singular partial differential equations are solved in [10]. The aggregated theorems of existence and
uniqueness of classical solutions can be proved with continuously depending of experimental definite function.
In [11] a nonlocal problem for the fourth order system of loaded partial differential equations is considered
and the questions of a existence unique solution of the considered problem and ways of its construction are
investigated.

The fractional differential and integral operators have applications in many fields of mathematical physics,
engineering, neurobiology, economics, control theory and combustion science [12, 13|. Therefore, this kind of
differential and integral operators plays an important role in the theory of linear and nonlinear analysis. It is also

*Corresponding author.
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known that in control theory is obtained a dynamic system, describing by the aid of fractional order differential
equations [14]. There are classical methods of solving some kind of fractional differential equations with Riemann-
Liouville operator, with the Caputo operator, or with the Erdeli-Kober operator. The Cauchy problems for
the diffusion-wave equation with fractional differentiation operators in the sense of Riemann-Liouville and
Caputo were investigated in [15-19]. Such kind of problems are of great importance in the construction of
mathematical models of diffusion processes. Interesting results were obtained in works [20-22] for the fractional
partial differential equations.

In this paper in the rectangular domain the unique solvability of the problem with boundary conditions first
and second kind with respect to the spatial variable is established for an inhomogeneous parabolic-hyperbolic
equation with fractional Caputo operator. In studying this boundary value problem application of three gluing
conditions allowed us to solve the problem in arbitrary rectangular domain. This work is a further development
of work [23] for the case of an inhomogencous equation.

So, in rectangle domain Q = {(¢, ) : —p < t < ¢, 0 < = < I} we consider a differential equation of mixed
parabolic-hyperbolic type

{ DS U —Uypy +AN2U = f(t,z), t>0, 1)
Uit —Uyu +N2U = f(t, ), t<O,

where A > 0,1 >0, p > 0, ¢ > 0 are known real numbers, f (¢, ) is known function and Dy, is fractional
order operator in the sense of Caputo:

(2)

—
o o
—
~
|
™0
—

|
Q
Q\
—~
N
~
U
n
o
AN
Q
VAN
v)—‘

Diyg(t)=4q "0

I (1 — ) is Euler gamma function.
Note that the Caputo operator (2) can be represented as follows:

DY U (t, x) = I&;“W, (3)
where ¢
12,90 (t) = ﬁ [ =2 g0l a2 (4)

a

is fractional order Riemann-Liouville integral.
We introduce the notations: J = {(¢t, ) : t =0,0 <z <}, Q=01 U Q2 UJ,

QD =0n{{t x):t>0,z>0}, Qo= N {(t, x):t <0, x <0}.

In the domain € we consider the following problem:
Problem 1. It is required to find a function U (¢, ) with the following properties:

U(t,z) eC(Q)NCH QU J), t'ULt z), > *Up(t, 2) € C(Q1 U J);

Utt€C<QQUJ>, Usa GC(QlUQg), CDgtUEC(QlUJ)

and satisfies the equation (1) in the domains Q; (j = 1,2); on the line J satisfies the gluing conditions

U (+Oa Jf) = U(_O7 J)), (Oa .73) € Ja (5)
. l—a T
tll)rilot Ut(t7 3:) - tglzl[) Ut(t7 l‘), (07 JJ) € Ja (6)
. 2—o T .
tgquot Utt(ta Jj) - tgrzloUtt (ta Jf), (07 J)) € ']a (7)

satisfies the following boundary value conditions
U(t,00=0, Ut 1)=0, —p<t<gq (8)

So, we note that in studying this problem we use three gluing conditions (5)—(7).
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Solutions of the equation (1), satisfying zero boundary value conditions (8), are sought in the form of the

Fourier series -
n=1
where

I
Uy (t):/U(t,ac) Iy (z) d,
0
2 . 5 5 ™m
I (x) = 78I pn, pn = w2+ A2, ,un:T,nEN.

It is known that a system of functions {¢,, ()},,~, form a complete system of orthonormal functions in the
space Ly [0,1]. We also expand the function f (¢, ) in a Fourier series by eigenvalue functions 9, (x):

[t /lf (z) dx.
0

Uniqueness of the solution of the problem 1

where

Theorem 1. If there exists a solution of the problem 1, then this solution is unique.
Proof. Let f (t, ) = 0 be in 2. We prove that a homogeneous problem U; has only a trivial solution. We
consider the function

l
0, (1) = /U(t, ) m(z) da. (11)
0

Then for the homogeneous equation (1) we obtain

l
2
D§Om \/;/ [Dg, U (t, a:]smpmzdx\/7/ Ugyo(t, x) sin ppxda—
0

l
2
—\/7/)\2U t, x) sin ppedx, 0<t<gq,
0" (t)=1/> /Uttt x) smpmxdz—\/7/ Ugy.(t, ) sin ppxdr—
2 |2 .
-2 7 U(t, x)sin pp,xdr, —p<t<O.
0

Hence, integrating by parts two times over z and taking the conditions (5)-(7) into account, we obtain
D§Omt)+pr0m(t) =0, 0<t<g, (12)
07, () + prfm(t) =0, —p<t<0, (13)
Applying the gluing conditions (5)-(7) to (11), we obtain
l

0, (+0) =/U(+0, ) O om(z) d =
0
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l
_ /U(—O, 2) 9 (@) da = 0,0(—0), (14)
0

1—ap/ . e’ —
t1_1>r_r|r10t 0., (t )—t1_1>r_r|r10/t Ui(t, 2) I pm(z)da =

l

— 3 _ /
— tim [ Uit 2) O m(@)do = lim 6,(0) (15)
0
lim ¢2720/ (t) = Jim / Uult, 2) I m(z)de =
t—+0
l
— 3 _ : 1
—t1_1>r£10 Uult, x)ﬁm(x)dx—tl_lgloem(t). (16)
0

By virtue of (3) and (4), the countable systems of differential equations (12) and (13), respectively, have
general solutions

Ount) = e Bx(—p22%, 1), 0<t<g, (17)
O (t) = am cOS pit + by sin ppt, —p <t <0, (18)

where ap,, by, ¢ are arbitrary constants and F1 (z, 1) is the Mittag-Leffler function with the form:

Eaa l > 0.
o(2) = a ;Faz+a 7

Substituting (17) and (18) into (14)-(16) and taking into account the property of the Mittag-Leffler function

Ei(z)=14zFE1(z, a+1),

1
=

we obtain

e =Gy by = —%cm, [(11“(_04(;) n 1] —Y

Hence, we find that ¢, = a,, = b, = 0. Consequently,

1
O (6) = [V (t.2) 0,0 (0) do =0, te[-p.a].
0

Therefore, by virtue of completeness of the systems of eigenfunctions {¢,, (z)},2, in the space Lo [0,1],
implies U (¢, ) = 0 almost everywhere on [0, [] for all ¢ € [—p, q].

Since, by virtue of the first condition of the problem 1, the function U (t, x) is continuous in 2. Therefore,
the solution of the problem 1 is unique. The Theorem 1 was proved.

Justification of the existence of a solution of the problem 1

Substituting the expansions (9) and (10) into equation (1), we obtain

Z’gn (@) D§un (t) = an () U (2) _anun () In (2), (& 2) € Qn,
n=1 n=1 n=1
Zulvlz (t) Vn (z) = an (t) In (z) — Zpiun (t) In (z), (t, ) € Q2
n=1 n=1 n=1
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Hence, taking into account the fact that the system of eigenvalue functions {¢,, (z)}=, form a complete
system of orthonormal functions in the space Lo [0,1], we arrive at countable systems of differential equations

DGy [un ()] + phun (t) = fu (1), 0<t <q, (19)
u” (t) 4+ p2un(t) = fult), —p<t <0, n€N. (20)
By virtue of (3), the equation (19) takes the form
Loy (&) + pptin (8) = fu (1), 0t <q. (21)
Applying the operator I§; [-] to both sides of equation (21) and taking
I8 Ioruy (t) = Ity (8) = un (t) —un (0)

into account we bring this equation to the Volterra integral equation of the second kind with respect to the
unknown function u,, (¢):

t
Unp (t—7)"" un(r)dr =

]

1 t
=u, (0)+ t—7) () dr, 0<t<q. (22)
r (a)o/
Taking
ﬁ/tHEa,a(M“) (2=t dt=2""Eg 5 (A2,
F}o) woie ()= Fao (2), 050, B3>0

into account we obtain the solution of the equation (22) in the form
Un (t) = cnBx (=pit®, 1)+

+/(t—7)a71Eé (—=p2 (r—1)",a) fn (r)dr, 0<t<q, (23)
0

where ¢, is arbitrary constant.
Solving the equation (20) by the Lagrange method, we obtain the representation

1
Up(t) =aycos ppt+by, SinpntJr—/fn(T) sin p, (1 —t)dr, —p <t <0, (24)
Pn

where a,,, b, are arbitrary constants.
Applying the gluing conditions (14)-(16) for m = n to representations (23) and (24), we derive unknown
coefficients a,, bn, cp:
fn (0)
Cp = Qy = 5 bn =0. (25)

n

Substituting (25) into (23) and into (24), we obtain the following representations

u, (1) = In Q(O)EL(—pita, 1)+

t
b [G=n" By (63 (=0, 0) Fu () dr 0 <1 <0 26)
0

Mathematics series. Ne 1(101)/2021 131



T.K. Yuldashev, B.I. Islomov, U.Sh. Ubaydullaev

0
1
Uy (t) = fzz(o) cos ppt+ p—/fn (1) sin pp, (1 —t)dr, —p <t <0. (27)
n n f

Substituting (26) and (27) into the Fourier series (9), we formally represent the solution of the problem 1
in the form of the following Fourier series

Ult,z)=Y Vn (z) [fZQ(O)E}I(pi t, 1)+
+/(7:—7)°“—1Eé (<p2(t—7) % a) fn (1) dr|, (t,2) e, (28)
0
= 0 7
Ut, z) = Zﬁn(x) f;g ) Cos pnt+ p—/fn (7) sin pp (r—t)d7 |, (t, ) € Qs. (29)
n=1 n n f

Theorem 2. Let the functions f (¢, z), fz(t, 2), fzx(t, ), fi(t, ) be continuous in Q and fi(t, ) €
€ Lo(Q), f(t,0)= f(t, 1) =0, —p <t < q. Then a regular solution of the problem 1 exists and is defined in
the form of series (28) and (29).

Proof. In proving the convergence of the series (28) and (29) with the properties of the problem 1, an
important role are played the applications of the Cauchy-Schwartz inequality and Bessel inequality. First,
estimate the following functions

1 1 1 IN? 1 mn
=55 <—==|= 5y Pn = 2 /\2a n = "7 €N§
pr MR AT R (W) n2 S

C C (t-m)'"cC
—p2 (-1 < <
O e | o ey e s L 5

t—7)" " M,
<M<—207 My>({t—71)"*C, 0 < C = const;

1
a

‘ E

<<
t t ¢ o |T=t o
/(t—r)“—l dr| = /(t—T)“—ld(t—T) :’( Ol S

a e
0 0

Then applying the Cauchy-Schwartz inequality and Bessel inequality to the series (28), we obtain the

following estimate
2 () N
IU(t,x)|<\[lZHf ()‘.‘Ei(—pit [+
n=1

I

max | f, (t)] | ¢
§\/?_'n+ 2 _— /(th)afldTg
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2
< 2\/;M0M1M2M3 ax |11 (6 2) | 1, g < 00, (1 2) €21, (30)

o N /1\*
Mlzmax{q;l};MzzmaX{<> ,<) };MSZ
«Q Vs ™

Similarly to estimate (30), for series (29) we obtain the estimate

max | f. (1)]
U (2 |<\lefn ep> arp e T

1 Pn

2 = 1 | 2 |1 |
<\/; Z/-LT Z|fn(0)|2+p I 272 max ‘fn(t)|2
n=1"" n=1

- —p<t<0
n=1 Hn n=1 P='=

where

<

2
<2 \/;N0N1N2 _max 1F (& 2) g0, <00 (£ @) € Qo (31)

I I 2 00 1
No = D1} Ny = o) N = Y S
o =max{p; 1}; N; max{w, <7r) }, 2 2 3

By virtue of the estimates (30) and (31), we conclude that the series (28) and (29) absolutely and uniformly
converge.

Similarly to the case of series (28) and (29), it is easy to check, that the series

where

27Uy (t, @) Zﬂ “ul, (8) 9 (2), (8 @) € D,

Uii(t, o) Zu” ), (¢, ) € Qs.
are convergent.

Now we prove the convergence of the following series

200 @) |22 (o2 e 1

|
M
y

[ =0T By (- ) Fa () dr | () 9, (32

fn(0)

n

0
1

Cospnt—I—p—/fn(T) sin pp (r—t)d7 |, (¢, z)€Qo. (33)
"

Integrating twice in parts the integral f, (t) = [ f (¢, ) 9, () do with respect to z, we obtain

o o

Falt) = —py2 FL (1), where f1 (¢ ffm (t, %) Un (x) da.

Then for the series (32) and (33) respcctwely, we derive the following estimates
2 — fn (0
U.L‘L tv < r 2 -
[Usa( I)I_\/an_lpn{
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+O/(t_7)a_l‘E; (_pi(t_T)a’a)"Lfn (r)|dr| <

"

. o I
S0 M qmax | fa ( .
S\/ZE ‘72()|70+§ Moq—% /(t—T) 1d7- <
0

2
1 Pn Pn el p
2
<2 \/?MoMleM?, max. [ foa(t @) 1,0, <00 (& 2) € Q, (34)
- - o
23| f4.(0)] %o /n
wa t, < Z on A0 M —_— <
|Use (t, 2) \[Z S E Y My
2
<2 7NON1N2 _max [ faa @) 1,0, <00, (t, @) € Q2. (35)

By virtue of the estimates (34) and (35), we conclude that the series (32) and (33) absolutely and uniformly
converge. It follows that the series (28) and (29) satisfy all the properties of the problem 1. Theorem 2 is proved.

Using the same method, we can establish a unique solvability of the following problem.

Problem 2. Find a solution U (¢, z) of equation (1) that is regular in the domain 2 and satisfies all the
conditions of problem 1 except (8), which is replaced by the following condition

U,(t,00=0, U,(t 0 =0, —-p<t<g.
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T.K. FOnnames, B.U. Uciomos, V.I11. Yoaiiyriaes

KanyTto oneparopsl 6ap apaJac tunti 6esniek auddepeHnnaiabIkK,

TeHJeyTre apHaJFaH NIETTIK ecerTep TYPaJibl

MakaJrazia TIKOYpBIITEI aiiMakTarb! 6eJiinek KaryTo onepaTopbl 6ap nmapadboJiajiblK, rurnepbosIaIblK, TUIITEC
GipTekTi eMec apasiac auddepeHInaIabIK TeHIey VIIMiH KeHICTIKTIK affHbIMaJIbIiFa KATBICTBI OIpiHII KoHE
ekiHmI TUnTeri merTiK ecenrep 3eprresdi. MyHmait meTTiK ecenTepmi 3epTTey KesiHzae GipiHini apryment
OOUBIHINIA IIeKAapPAJIbIK MIapT KOIOJaH 0ac TapThLIJbI »KOHE OHBIH OPHBIHA KOCBIMINA Y31JIiCCi3[iK mapThbl
KOJIZIAHBUIIBI. BysT perTe GipKaKTHI MIEITTYiH HEri3Jey VINH IeKapaJiblK OOJIBICKA apHAJFaH MapTTap
aJIBIHBIN TAacTaJ 3 bl. Byl Makaja aBTOp/iapbl KApAcTBIPFaH IIETTIK ecenTep/ i, 61p»KaKThI eIy KpUTe-
puitin oiiciperyre Mmymkingik 6epesi. [llemtim OipTekTi cieKTpJIiK ecenrepre coiikec KeJieTiH 03 (DYHKIIAS-
smapel 6ap @ypbe KaTapapsl TYpiHje kacaaabl. Pypbe KaTapapblHBIH KOHBEPTEeHIIUSICHI OChI apaJiac TEeH-
JEeyIiH TYPAKTBhI IIENMi PeTiH/Ie aJIbIH/IbI.

Kiam coesdep: apanac nuddepeHImaIbIK, TeH ey, bomek peri, KamyTo onmepaTopbl, MOAEIbIIK €MEC TEH-
ney, Dypbe Karapsl, y3ijgiccizaik maprrapsl, 6ip»KakThI IIEIIiTy.
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O kpaeBBIX 3aJa9ax JJist ApoOHOro aAnddepeHImaIbHOro ypaBHEeHUs

10

11

12

136

CMeIaHHOro Thuna ¢ oneparopom KamyTto

B craTbe ucciieioBanbl KpaeBble 3a1a9K TIEPBOTO U BTOPOIO POJOB OTHOCUTEIBLHO IIPOCTPAHCTBEHHOIO IIepe-
MEHHOTO JJIsi CMEITAHHOTO HEOTHOPOIHOTO IuddEpPEHINATBHOTO YPABHEHNUS Tapab0JIO-TUIIEPOOTTIECKOTO
THUIIa C APOOHBIM ortepaTopoM KaryTo B mpssmoyroJibHO# obJtactu. [lpu uccieioBannu TaKux KpaeBbIX 3a0a4
aBTOPBI OTKA3AJIUCH OT 38JIaHKsI TPAHUYHOTO YCJIOBHUSI IO IEPBOMY apTyMEHTY UM UCIIOJIb30BaIU BMECTO STOTO
JOTIOJTHUTE/ILHOE YCJIOBUE CKyIenmBaHusi. [Ipu 9TOM B 0O0CHOBAHUHN OHO3HAYHON Pa3pEITMMOCTH CHUMAIOTCS
YCJIOBUS HA TPAHUYIHYIO 00JIACTH. DTO MO3BOJIUIIO ABTOPAM CTaTbhU OCJIabUTh KPUTEPHl OJJHO3ZHATHON pas3pe-
IIAMOCTH PACCMaTPUBAEMBIX KPAEBBIX 3aJ1a4. PeleHne mocTpoeHo B Buie psiaoB Pypbe ¢ COOCTBEHHBIMU
GYHKIUSIMA, COOTBETCTBYIOIAMA OJHOPOIHBIM CIIEKTPAJIHHBIM 3aaadaM. 1lo/rydeHbl OEHKU CXOMUMOCTH
psanoB Oypbe Kak peryJisipHOe PEIIeHHe STOr0 CMEIIaHHOIO YPaBHEHUSI.

Kmouesvie caosa: cmermantoe auddepeHnnaabHoe ypaBHeHne, poOHbIN MOpsiIoK, oneparop KamyTo, He-
MofeabHOe ypaBHenue, psaa Oypbe, yCIoBUs CKIECUBAHUs, OTHO3HAYHAS PA3PENTINMOCTD.
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On a New Class of Singular Integro-differential Equations

In this paper for a new class of model and non-model partial integro-differential equations with singulari-
ty in the kernel, we obtained integral representation of family of solutions by aid of arbitrary functi-
ons. Such type of integro-differential equations are different from Cauchy-type singular integro-differential
equations. Cauchy-type singular integro-differential equations are studied by the methods of the theory of
analytic functions. In the process of our research the new types of singular integro-differential operators
are introduced and main property of entered operators are learned. It is shown that the solution of studied
equation is equivalent to the solution of system of two equations with respect to x and y, one of which
is integral equation and the other is integro-differential equation. Further, non-model integro-differential
equations are studied by regularization method. This regularization method for non-model equation is
based on selecting and analysis of a model part of the equation and reduced to the solution of two second
kind Volterra type integral equations with weak singularity in the kernel. It is shown that the presence
of a non-model part in the equation does not affect to the general structure of the solutions. From here
investigation of the model equations for given class of the integro-differential equations becomes important.
In the cases, when the solution of given integro-differential equation depends on any arbitrary functions, a
Cauchy type problems are investigated.

Keywords: singular integro-differential equation, model equation, non model equation, characteristic equati-
on, Cauchy type problem.

Introduction

In addition to the theory of differential and integral equations, the theory of integro-differential (I-D)
equations with regular and singular coefficients plays an important role in theoretical and applied research.
There are many scientific publications where theoretical or applied aspects of the theory of I-D equations are
studied. Of particular interest is research on I-D equations with singular kernels. During the last years the
theory of the I-D equations basically developed in two directions. The first direction is connected with the study
of approximate solutions of I-D equations [1-10]. The second direction is connected with construction of the
general theory for a new classes of the I-D equations [11-18|. Study of the various aspects of I-D equations
in Banach spaces also concerns to the second direction [19-21]. Also, in last years the methods of solving the
direct and inverse problems and problems with small parameters for the I-D equations [22-24] were actively
developed.

One of section in the theory of the I-D equations, which is not studied completely, is the section of I-D
equations with singular and super singular coefficients. Some results in this direction are received by integral
transform methods in [25-27]. But, we note that the singularity in dependent of the studied problems has
different nature. Therefore, the approach of separate authors to study the singular problems happens in different
ways.

In the classical singular integro-differential equations the integrals basically we understood in sense of a
principal value of Cauchy. Consequently, in solving some equations the methods of analytic functions are used.
Unlike this, we will investigate such singular I-D equations, in which integrals are understood in ordinary sense
of Riemann. Therefore, our approaches in studying the given problem are also different from the works [13-15].
This work is a further continuation of our research in [28, 29].

*Corresponding author.
E-mail: tursun.k.yuldashev@gmail.com
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1. Formulation of problem and basic designation

We denote: D = {(z,y): a<z<c¢, b<y<dtandThy={a<z<c,y=>b}Teo={r=0qa, b<y<d}
In the domain D we consider a partial integro-differential equation with singular coefficients:

K@E%(x,y)+%sﬂ+/ B(®) w(t,y)dﬂr/%w;(%swﬁ

J (t—a)? /
[ [odt [ H(s) -
+b/ (x —a) s—b) (I’S)ds+/(t_a)2 J s—b o(t,s)ds = f(z,y), (1)

where A(x), B(z), E(y), G(z,y), H(xz,y) are given functions connecting to each other by equalities
G(z,y) = A(z)E(y), H(z,y) = B(x)E(y); f(z,y) is the given function on the domain D; ¢(z,y) is a unknown
function.

An importance of studying equation (1) consists in the following idea:

1 The degree of singularity in the kernel of the studied equation with respect to x is equal to 2 and with
respect to y is equal to 1. Therefore the kernels of this equation are not Fredholm type kernels;

2 Singularity in this equation is not understood in the sense of a principal value of Cauchy;

3 For the solution of this equation we do not use methods of the theory of analytic functions;

4 We obtain the solution of the considering equation in the sense of generalized solution from the theory of
regular I-D equations.

To solve the equation (1) we introduce some designations:

1 Through C%:%(D) we denote a class of such functions, which have the first order continuous derivative
with respect to the variable x with an asymptotic behaviour

f(z,y) = ol(x —a)™, (y — b)"],71 > 01,72 > da. (2)

2 We denote C‘;l’ (D) = C%(Ty) and C%%2(D) = C%(T'y).
3 Through C fl(a) (T'1) we designate a class of such functions, for difference of which there is true the following
f(z) = f(a) = 0 as & — a. This type of functions has an asymptotic behaviour

f(@) = fla) = o(z —a)*], 71 > d1.

If f(a) = 0, then we have denotation C§'(T;) = C% (T).
The solution of equation (1) we seek in the class CL:%(D). For this purpose by Ha A(I) B(x) and Hg’}g(y) we
designate operators acting on function ¢(z,y) by rules

2 by #(o) = o) + 2 bptan) + [ ottt 0
Hi’ji;(y)w(x,y) = p(z,y) + / fﬁs;)go(x,s)ds. (4)

b
If A(xz) = A = const, B(z) = B = const and E(x) = F = const, then operators 2’114’2Bg0(x y) in (3) and
Hi’:llgcp(x, y) in (4) we call model operators and the equations corresponding to these operators we call model

equations.
So, equation (1) by means of just entered operators we represent as
1 _
Hz JA(x), B(x)H:g,E(y)go(x? y) - f(xa y) (5)

Then the solution of operator equation (5) is equivalent to the solution of the following system of I-D
equations

H’Ey z,y) = Y(z,y),
{ ()‘P( Y (z,9) (6)

Hz 114(21) B(z)w('r y) f(:l?7 y)a

where 9 (z,y) is a new unknown function and the function f(z,y) has an asymptotic behaviour (2).
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By separating model part of system (6) we obtain

{ Héj:g(b)@(fﬂ, y) = \I/(J), y)a (7)
Hz:z?a)’B(a)w(x,y) = F(z,y),
where )
E(s)— E(b
R R e L ®
b
A(z) — A(a) / B(t) — B(a)
r _ _ ala) — [ 22Tt y)dt.
(,y) = f(z,y) e UCRY) o) U(t,y) (9)
It is obvious that the homogeneous equations of system (7) correspond to characteristic equations
E(b
14+ 20 g (10)
A
B
uw+ Aa) + ,u(—a)l =0. (11)

In dependent of the roots of the characteristic equations (10), (11) we obtain the solution of the system of
equations (7) in following form.

Let A = —E(b) > 0 and the roots of the characteristic equations (11) be real and different, 1 < p; < po.
Then the solution of nonhomogeneous equations (7) gives by formula:

-1
e(a,y) = (y = b er(@) + Wlayy) + (AT W(ay) = By, 12
bla,y) = (@ =) esly) + (@ — ay=ely) + (A2, ) T Flay) = B,

71 _
where By = Ei[c1(z), ¥(z,y)], B2 = Esea(y), c3(y), F(z,y)], operators (Hé’”i“) and (Hx”“””“ ) ! are

a,1—p1,1—po

inverse to operators Hg’llf(b) and Hz’z’(za) B(a)’ respectively, and the explicit form of these operators are

Y A
-1 — 0\ U(z,y)
y,A+1 _ Yy Y
(HM ) \Il(x,y)—)\/(s_b) )
b

1
(et nla,) Flay) =

¢%1][u—un(f‘j)m—wl—ug(f‘j)w}meMt

Substituting the value of ¥(x,y) and F(z,y) from (8), (9) into (12), after some transformations we come
to solving the following Volterra type integral equations

ﬂ%m+/m@wwm@w=Ewmmw%m,
b

wmw+£f/&wwmww=&m@mwwme

B N e
=0 (75) - ()|

f) -G
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If we introduce new unknown functions as o1 (z,y) = (“Z (@ szm 1 (x,y) = (f(flﬁ?l , then instead the integral

equations (13) we solve the following integral equations

ora)+ [ Kial o) (eshds = = [Cl(;xi’ ;j;&”’y”,
(14)
1 Esca(y), c3(y), f(z,9)]
r(e.9) + = [ Kooty ()i = Z2E LTI,
where 5 208
Kia(y,s) = %,
_ H2—H1 _
Koy(z,t) = |1 —p1 — (1 — p2) (?_5) w-i-
r—a\"*""| B(t) - B(a)
e <t —a ) t—a
If the following conditions are fulfilled
Alw) € Tl (T0), Bla) € Tt (T), E(y) € Ty (Ta), )

flz,y) € =221 (D) {ea(y), esy)} € CH(T),

then the integral equations (14) become a Volterra type integral equations with weak singularity in the kernel
and with the continuous right-hand side function. The solution of equations (14) by means of resolvent we write

as
]

_ Bila(@),6(zy) Bile@), v 8)]
901(1,734)* (y—b))\ /Fl(ya ) (S—b))‘ d )

b

Ui(z,y) = EQ[CZ(y()a;C_B(ay));;f(x’ VD / o, 1) =2 62(11(1’i3§)/3’1f(t’y”dt,

where Ty (y, s), I'a(z, t) are corresponding resolvent of integral equations (14).
Now coming back to our unknown functions ¢(z, y), ¥ (z,y) we find the solution of equation (5) (or equivalent
equation (1)) as follow:

Y A
o) = Brfer @) (o) = [ Tats) (L5) Buleata) oo, sl
b

Uz, )=E2[62( ) es(y), fz,y)]— (16)

Tyl t) (‘) " Balea(y), es(y). £t )t

So we proved:

Theorem 1. We assume that conditions (15) are fulfilled; G(z,y) = A(zx)E(y), H(z,y) = B(z)E(y) in I-
D equation (1) and the roots of the characteristic equations (10) and (11) are such that A = —E(b) > 0,
1 < p1 < 2. Then the solution of equation (1) in the class C19(D) is presented by formula (16).

From the validity of this Theorem 1, the following corollary holds.

Corollary. We assume that conditions (15) are fulfilled; G(z,y) = A(z)E(y), H(z,y) = B(z)E(y) in the I-D
equation (1) and roots of the characteristic equations (10) and (11) are such that A = —E(b) < 0, pu1 < p2 < 1.
Then the solution of equation (1) in the class C19(D) is presented by following formula

o) = 00— [ Tat0) (L20) Bt s
b
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where

¥(z,y) = E2(0,0, f(z,y)]

—a H1
FQ .’K t ( —(I) E2[anaf(tay)}dt

F

Let A = —E(b) > 0 and the roots of the characterlstlc equation (11) be real and equal, g1 = p2 = p > 1.
Then the solution to the second equation of system (7) we represent as:

Pz, y) = (x = a)ca(y) + (x — @) In(z — a)es(y)+

(Hzﬁ 1 1)71F($7y) = E3[04(y),c5(y),F(x,y)],

where N
m
- -1 B r—a r—a
(Hawfl,l) F(x’y)_/(ta) |:(:u’_1)1n(ta)+1:| F(tay)dt
Here the operator (Il 1)71 is inverse to I-D operator Hi”i’?a)’B(a), when the roots of the characteristic

equation (11) are real and equal.
In this case repeating the above-stated scheme without stopping in details we obtain the general solution of
equation (11) in a following form:

Y A

o) = Bilea(o),vle)] - [T00) (L24) Buleato), ot s, (17)
b

where

t:a

0(e.9) = Boleaty).cs(w). o)) = [ Tt ( >#E3[64(y),05(y)7f(t,y)]dt

and T'z(z,t) is the resolvent of the integral equation which is written in an explicit form.
Thus the following theorem takes place:
Theorem 2. We assume that the following conditions are fulfilled:
1) G(z,y) = A(x)E(y), H(z,y) = B(z)E(y) in an I-D equation (1);
2) The roots of the characteristic equations (10) and (11) are such that A = —E(b) > 0, pn > 1;
3) The following inclusions take place

A(x)eCi(a)(ﬂ) ()GCEB(G)(FQ ()ECE(b( 2);
fla,y) € CH1AHD), {ea(y), es(y)} € CH(T).

Then the solution of equation (1) in the class C1Y(D) can be represented by formula (17).
Remark 1. In this case, if A = —FE(b) < 0, u < 1, we obtain the unique solution of equation (1) in the form

Y A
o) = B0 (o] = [ Tats) (L5) B0l sl

b

where

m
P a) E3[0,0, f(t,y)]dt

7/)(%21) = E3[0a07f(x,y)} - /F3(xvt) <$ -

a

Let be A = —E(b) > 0 and the roots of the characteristic equation (11) are complex, conjugate and

| V3B(@) - 1+ A{@)?
2 2

Then we can write the solution to the second equation of system (7) as:

P(x,y) = (z — a)* {cos [FIn(z — a)] ¢6(y) +sin[BIn(z —a)e7(y)} +

H(I8, ) Py = Bales(y) exly), Flau))

1= a = pi.

H1,2 =
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(Hiig—l,g)_lF(x,y) = ;/z (9;:5)& {(a ~1)sin [ﬁln (f:s)} +
+8 cos [ﬂln <f_§>} } f(w,s)dt.

-1
Here the operator (Hz’g_l 5) is inverse to I-D operator Hz’zfa) B(ay: When the roots of the characteristic

where

equation (11) are complex and conjugate.
In this case too repeating the above-stated scheme by means of resolvent of corresponding Volterra type
integral equation we obtain the general solution of equation (1) in a following form:

Y

A
el = Brfa ) (o] = [ Tats) (L5) Bileato), ol slas, (19)
b

where
xr

U(e.9) = Bileoy).en(o).f()) - [ TaGe. (

a

r—a

) Ealeo(y), cr(y). f(t,y)]dt.

t—a

Thus, the following theorem takes place.

Theorem 3. We assume that the following conditions are fulfilled:

1) G(z,y) = A(x) E(y), H(z,y) = B(x) E(y) in an I-D equation (1);

2) The roots of the characteristic equations (10) and (11) are such that A = —E(b) > 0, Re 1,2 = a > 1;
3) The following inclusions take place

A(z) € Cq) (T1), B(z) € Ch) (Th), E(y) € Crw) (T2),
Fw,y) € C21AL(D), {egly), er(y)} € C1(T).
Then the solution of equation (1) in the class C1?(D) can be represented by formula (18).
Remark 2. If A = —E(b) < 0, o < 1, we obtain the unique solution of equation (1) in the form

Y

A
o) = B0, vl )] - [ Ts) (L25) Bl0. ot s,
b

where

blo) = Bil0.0, 5] - [ Tate0) ($22) B0, f(e )l

2. Boundary value problem

One of the most important results in the theory of I-D equations is solving the Cauchy type problem and
boundary value problems. The Cauchy type problem, when zy does not the same as singular point, is solved as
in ordinary theory. But in the theory of singular I-D equations it is interesting when corresponding conditions
are given at singular point. In this case such kind problems we call singular Cauchy type problems. The singular
Cauchy type problems are different from ordinary Cauchy problems, that in our case the problem gives with
some weights.

We introduce the following denotation:

Py lp(z,y)] = ﬁw(ﬂc, Y),

T —_ y,1
Pa,/tl [@(I7y)} - (.’17 _ a);“ [Hb’E(y)SD(xay)} ’
. 1 d 1 1
Pa»m’ltz [ga;,(m,y)] = (JC — a)ul_ﬂg_l dr [(33 _ a)pl Hg,E(y)W(x7y) .
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Then the following remark holds:
Remark 3. The solution of type (16) has the following property:

[P }y p— G (‘T)
[ a #1 } = CQ (19)
[ Q, 41542 pr €, y)]] (MQ - ,ul)Cg(y).

Now we consider the following singular Cauchy type problem:

Singular Cauchy type problem. Let the roots of characteristic equations (10) and (11) be such that
A= —E(b) >0, 1 < p; < pg. It is required to find such solution of equation (1), which belongs to the
class C1:°(D) and satisfies the following initial value conditions:

[Pby,A [go(ac,y)] ]y:b = Wl(x)a
[Py, Lol )], _, = wa(y),
[P;,ul,uz [(P/I(l’, y)] ]m:a = wg(y),

where wy(z), wa(y), ws(y) are given functions on the domain D.

By virtue of integral representation (16) and its property (19), for equation (1) we find functions ¢ (), c2(y),
¢5(y) by means of the given functions wy (2), wa(y), ws(y): €1(2) = wi(®), ca(y) = wa(y), ealy) = »—Lrwaly).
Therefore substituting these values into (16), the unique solution of the singular Cauchy type problem be
found as y

A
o(z,y) = Eiwi (), ¢¥(z,y)] — /F1(y»8) (ijb> By [wi(x),9(x, s)]ds,
b

V(1) = Balea(y), (o). £z )] (20)
1 r z—a\" 1
- 10 (22) B eato), et st

a

So we have proved the following theorem.

Theorem. 4 Let all conditions of Theorem 1 be fulfilled. Then the singular Cauchy type problem has a
unique solution, which is given by (20).

Such kind of problems can be investigated, when the roots of characteristic equation (11) are real, equal,
complex and conjugate.
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T.K. Onnames, C.K. Sapudsomna

CuHryJIspJbIK, THTerpo-and depeHImasabIk
TeHJIeyJIepaiH, O0ip »KaHa KJIachl TyPaJibl

Maxkamnama stmpoma epekmestiri 6ap MOMEBIIK KOHE MOJEIbIIK €eMeC Jepbec TYBIHIABLIBI WHTErPO-
nuddepeHnnaIbIK, TeHIeyIepIaiH »KaHa KJachl VIIiH epKiH (QYyHKIUsIap KOMEriMeH WHTErpaJiIablK Yiip
Typingeri memnrimi anbiaral. Varerpo-muddepenimanabik, Tegaeyiaepaiy 6ya typi Komn tunrec cuury-
JISIPJIBIK, HTHTETPO-IuDEPEHITNAIBIK, TeHIEYIepaeH o3reme. Komm THmiHAeri CUHTY/ISIPIBIK HHTErPO-
nuddepeHnnaIbIK, TEHIEYIEeD aHAJIUTUKAJBIK (DYHKIHUAIAD TEOPHUSICHIHBIH, dJiCTepIMEH KapacThIPBIIFaH.
3epTTey GapbICHIHIA CUHTYJISPJILIK, HHTEIPO-IuddePEHITNAIIBIK, OTIEPATOPJIaPIbIH, 2KaHa TYPJIepi eHrisimi,
OCBI €HTI3LJITEeH OIepaTOPJIAPABIH, HETI3r KacueTTepi 3epTTe/l. 3epTTeeTiH TeHIEY/IiH, MMMl X KoHe Y-
K€ KATBICTBI €Ki TeHJiey »KyHeciHiH ImenriMiHe TeH eKeHJIri KOpCeTIJIreH, OJlapblH 6ipi — MHTEerpaJsIblK
TeHJEyY, aJl eKIHIIICI — HHTerpo-nuddepeHInaIbIK TEHIEY OOJIBIN TabbLIaAbl. OPi Kapail MOMIE/bIiK eMec
nHTErpo-auddepeHnnaIbIK, TeHIEYIeD PEryIsipu3ausiay oficimen 3eprreared. Momenbaik emec TeHaey-
i perTeyin 6y 9J1ici TeHJIeY/IiH, MOJEIbIIK OOJIIrH TaHayFa *KoHe TaJJIayFa Heri3/1e/INeH KoHe sIIPOJIAFbl
9JICI3 epeKIeniri 6ap exinm Tunreri Bosbrepp THIITEC €Ki MHTErPAJIILIK, TEHJAEY/II IIeNyre IeiiH a3asijIbl.
Tenneyne momennb ik emec 60K TIH GOJTYBI TIENTIMAEP/IIH, 2KaIIbI KYPBLUIBIMBIHA DCEP €TIENTIHI KOpCeTiIre .
CoHABIKTaH UHTErPo-auddepeHnnaablK, TeHIeYIePIiH OChl KJIaChl YIIIH MOIEIbIIK TeHIEYIep/Ii 3epTTey
MaHbI3bI. Ocbl HHTErpo-audHepeHITIAIBIK, TEHAEY/IIH IIelIiMi Ke3 KeJITeH epPiKTi (DyHKIUsIIapIaH TOyesI Il
bosran karmaiiga Komwu Tunrec ecenrrep 3eprresies.

Kiam cosdep: cuHTynspiblk, nHTErpo-anddepeHnnaablK TEHIEY, MOAEIbIIK TeHIEY, MOIEIbIIK €MeC TEeH-
Jiey, CUIIaTTaMaJIbIK, TeH ey, Ko tumnrec ecer.

T.K. FOnnames, C.K. Sapudzona

O06 oaHOM HOBOM KJIacCe€ CUHTYJISIPHBIX
nHTerpo-anddepeHImaaIbHbIX YPaBHEHMIT

B cratbe mis HOBOrOo Kiacca MOENBHBIX W HEMOAETBHBIX HHTErpo-AudHepeHITnaIbHbIX YPABHEHUI B
YaCTHBIX IPOM3BOJHBIX C OCOOEHHOCTBIO B siJIp€ IIOJIYYEHO DeIlleHWe B BHIE CEMeNCTBa HHTErPAJIBLHOTO
[IPEJICTABJIEHUSI C IIOMOIIBI0O IPOU3BOJIBHBIX (yHKIwmit. Takoit Tun wHTErpo-InddepeHInalbHbIX ypaBHe-
HUIl OTJIMYAETCsT OT CHHIYJSPHBIX WHTErpo-amddepeHmaapubix ypaaenuit tuna Komm. CunrysspHbe
nHTEerpo-auddepenHnraabable ypaBHeHns Tuna Ko n3yyaoTcs MeTo[aMy TEOPUN aHAJTUTAIECKUAX PYHK-
numit. B mporiecce Haero nccieoBanus BBEJAEHBI HOBBIE TUIIBI CHHIYJISIPHBIX MHTErPO-1nddepeHnaIbHbIX
OIEPATOPOB U M3yYEHBI OCHOBHBIE CBOMCTBA ITUX BBEIEHHBIX omeparopos. [lokazano, uTo perenune mccie-
JyeMOTr0 YpPaBHEHUs 9KBUBAJICHTHO PEIIeHUIO CUCTEMBI JIBYX YPaBHEHHMIT OTHOCUTEJIBHO T U Y, OJHO U3 KO-
TOPBIX ABJISETCS NHTEIPAJIBLHBIM YPAaBHEHHUEM, a JPyroe — HHTEerpo-anddepeHnnaJlbHbIM ypaBHeHueM. Ja-
Jiee HEMOJIETbHBIE UHTErpO-audHepeHITnaIbHbIE YPABHEHUS UCCIEIOBAHBI METOIOM PETYISPU3AIIH. DTOT
METO/T PeryysIpU3allid HEMOJIEJIbHOIO yPABHEHNsI OCHOBAH HAa BBIOOpDE W aHAIU3€ MOJEIBHOI 4acTh ypas-
HEHHUSI W CBEJEH K PEIICHMIO JBYX WHTErpaJIbHBIX ypaBHeHuil tuna Bosiabreppa BTOpOro poma co ciaboit
0cobeHHOCTRIO B simpe. [lokazamo, ¥T0 HaJMYMe HEMOJEIBHON YACTH B YPABHEHWH HE BJIUSET HA OOIILYIO
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cTpyKTypy pernennit. OTcrona BaxkHOe 3HAUYEeHNEe TPHOOpeTaeT MCCJIeI0BaAaHNE MOJETbHBIX YPaBHEHUA JIJTst
JAHHOTO KJIacca WHTerpo-auddepeHnualbHbIX ypaBHeHuii. B cirydasx, Korga perieHue JaHHOTO WHTErpo-
nuddepeHInaILHOIO YPpaBHEHNST 3aBUCUT OT JIFOOBIX MPOU3BOJIBHBIX (DYHKIU, UCCIETOBAHBI 38141 TUIIA
Kormmn.

Kmouesvie cao6a: CHHTYIIIpHOE HHTETPO-TudhepeHnnaabHoe ypaBHEHNEe, MOJIE/IbHOE YPaBHEHIE, HEMOJIETh-
HOE ypaBHEHHUE, XapaKTEePUCTUIECKOe ypaBHEeHHE, 3a1a4a Tra Kormm.
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